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a/b testing with fat tails 4615
or from rare, unpredictable large successes. If the tails of the unob-
serveddistributionof innovationquality are not too fat, the standard ap-
proach of using a few high-powered “big” experiments is optimal. How-
ever, if the distribution is very fat tailed, a “lean” strategy of trying more
ideas, each with possibly smaller sample sizes, is preferred. Our theoret-
ical results, alongwith an empirical analysis ofMicrosoft Bing’s EXPplat-
form, suggest that simple changes to business practices could increase
innovation productivity.
I. Introduction
Randomized experiments are increasingly driving innovation in many
fields. In the high-tech sector, major companies run thousands of exper-
iments (called A/B tests) each year and use the results to screen product
innovations.1 In policy and academic circles, randomized experiments
are used to evaluate social programs and shape public policy.2 A striking
feature of experimental results is the presence of “black swans”: innova-
tions with large, unexpected effects. These outliers are commonly found
to be valuable in the innovation process.3

This paper studies how to allocate scarce experimental resources (par-
ticipants in a randomized experiment) to screen different potential inno-
vations. Todo so, we develop a simplemodel of optimal experimentation.4
or example, when a user conducts a search on a search engine, such as Bing or
le, the user is placed in about 10 different experiments, which are run in parallel. Ex-
ents may vary aspects of the search engine, such as the search algorithm or the user
face. These experiments are now common practice throughout the technology indus-
/B tests initially rose in popularity in cloud-based products that run on servers, such
g and Google, where the costs of experimentation are low. However, A/B tests are
ncreasingly used in traditional software products and other areas of business.
ee Duflo, Glennerster, and Kremer (2007), Deaton (2010), Imbens (2010), and Athey
mbens (2017).
n technology, Kohavi et al. (2013) describe a team of Microsoft Bing engineers that in-
ed the length of the description of each advertisement, by providing links to the target
his idea required almost no coding effort but went untested for a long time because
engineers did not expect it to be successful. Eventually, the idea was tested and shown
rease revenue by tens of million dollars per year. Such anecdotes of black swans are
on in many other companies. Other evidence suggestive of fat tails in innovation pro-

s are the distribution of patent valuations (Silverberg and Verspagen 2007) and the dis-
ion of citations (Redner 1998; Clauset, Shalizi, andNewman 2009). In behavioral inter-
ns, there are examples such as defaults that have arguably generated very large effects
rian and Shea 2001; Johnson and Goldstein 2003).
here are two broad strands of the theoretical literature on optimal experimentation.
trand follows the sequential decision problemproposed byWald (1947).He andArrow,
well, and Girshick (1949) considered the problem of acquiring costly information
time and then making a decision. Recent contributions include Moscarini and Smith
), Che and Mierendorff (2016), Fudenberg, Strack, and Strzalecki (2017), and Morris
track (2017). McClellan (2019) considers agency problems in this setting and has a re-
f the literature on these agency problems. Banerjee et al. (2017) consider an optimal
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The model’s specifications are based on howmodern technology compa-
nies use online, large-scale experiments to guide their product innovation
decisions. Ourmodel departs from the previous literature in that we allow
for the distribution of innovation quality to have fat tails, thus allowing for
outlier ideas. Despite the importance of fat tails, they are assumed away in
almost all of the optimal-learning literature.5

Our main result is that the thickness of the tail of innovation quality
is crucial to determine how best to experiment. With sufficiently thin
tails, the optimal strategy is similar to “big-data” approaches that are com-
monly used by large technology companies. These companies carefully
triage ideas and conduct large-scale, statistically powerful experiments
that can detect even small benefits of a given product innovation. With
sufficiently fat tails, however, the optimal strategy is similar to “lean” ap-
proaches that are used by many startups and entrepreneurs. These con-
sist of running many small-scale experiments and discarding any inno-
vations without outstanding success.6 More broadly, going beyond the
internet setting, our results suggest that fat tails are important for optimal
learning and optimal experimentation models.
We apply our model to data from A/B tests conducted at one of the

largest experimentationplatforms in theworld.Wefindnot only evidence
for fat tails but also that they have important consequences for how to run
5 In the literature on the value of information, the main results in Chade and Schlee
(2002), Moscarini and Smith (2002), and Keppo,Moscarini, and Smith (2008) use bounded
utility. In the optimal-learning literature, the main results in Arrow, Blackwell, and Girshick
(1949), Che and Mierendorff (2016), and Fudenberg, Strack, and Strzalecki (2017) assume
either a finite number of states or normally distributed utility. In the bandits literature,
Bubeck, Cesa-Bianchi, and Lugosi (2013, 7711) state, “The vast majority of authors assume
that the unknown distributions. . .are sub-Gaussian.” They develop algorithms with losses as-
ymptotically similar to those of the standard upper-confidence-bound algorithms for distri-
butions with at least twomoments but worse bounds if no secondmoment exists. See also the
survey Bubeck and Cesa-Bianchi (2012), sec. 2.4.7. The bandits literature is concerned with
algorithms that achieve certain regret bounds in complex models where the optimal strat-
egy is too complex to analyze, whereas we study properties of the optimal solution in a sim-
ple model.

6 This is referred to as the “lean startup”methodology and is closely related to agile soft-
ware development frameworks (Ries 2011; Blank 2013; Kohavi et al. 2013). The idea is to
quickly and cheaply experiment with many ideas, abandon or pivot from ideas that do not
work, and scale up ideas that do work.

experimentation model to argue that randomized experiments are a good way to persuade
an audience with heterogenous beliefs. The other strand follows the multiarmed-bandit
problem proposed by Thompson (1933) and Robbins (1952). They considered the problem
of choosing which number of “arms” to pull over time, with arms having known payoff distri-
butions. This sparked the development of a rich literature, mostly in computer science.
Bubeck and Cesa-Bianchi (2012) is an excellent overview. Bergemann and Välimäki (2008)
give an overview of economic applications. Kasy and Sautmann (2020) study the problem
of designing a dynamic experiment to choose between one of a number of designs and de-
velop an algorithm following the bandits literature on the best-arm identification problem.
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and interpret experiments.7 Before going into detail, we provide an over-
view of the paper.
Section II introduces the model. A risk-neutral firm has a set of ideas

and a set of users. The quality of each idea is uncertain and is drawn in-
dependently from a prior distribution. To learn about the value of an
idea, the firm can run an experiment on a subset of users. The experi-
ment produces a noisy signal of the quality of the idea. The firm’s prob-
lem is how to assign its total budget of available users to each idea and to
then select which ideas to implement.We term this theA/B testing problem.
Section III derives our theoretical results. The decision of which ideas

to implement is simple. The firm should use Bayes’s rule to calculate
the posterior mean of the quality of each idea and implement ideas with
a positive posterior mean quality (proposition 1). The decision of how
to experiment depends on what we call the production function. We de-
fine the production function of an idea as the firm’s expected gain of al-
locating a number of users to experiment on it. We show that the firm
should allocate users to maximize the sum of production functions of
all ideas (proposition 2). Whether the production function has increas-
ing or decreasing marginal returns determines the productivity of big and
lean experiments.
Our main theoretical result relates the tails of the prior distribution of

innovation quality to the shape of the production function. We assume
that the prior distribution has tails that are approximately a power law
with coefficient a.8 We show that, for a relatively small number of users
n, the marginal product of data is approximately proportional to

n a23ð Þ=2

(theorem 2). This suggests that the tail coefficient a is the key parameter
for understanding the shape of the production function and themarginal
returns of lean A/B tests.9
7 This part of our paper contributes to the recent academic literature that studies A/B
testing in the tech industry. Goldberg and Johndrow (2017) and Coey and Cunningham
(2019) consider how to use data from many experiments to improve estimates from each
experiment. They and Peysakhovich and Lada (2016) and Peysakhovich and Eckles (2017)
give evidence of fat tails in the quality of innovations. Feit and Berman (2018) consider a
model to determine how long to test and run new advertisements. Berman et al. (2018)
give evidence of p-hacking in firms that use off-the-shelf A/B testing services.

8 That is, the probability of an observation exceeding d is roughly proportional to d2a.
9 The production function is often referred to as the value of information (Radner and

Stiglitz 1984; Chade and Schlee 2002; Moscarini and Smith 2002; Keppo, Moscarini, and
Smith 2008; and also the recent work of Frankel and Kasy 2018). A common finding in this
literature is that the value of information is often convex close to zero. We contribute to
this literature by showing that the tails of the distribution of innovation quality are a key
determinant of whether this convexity result holds. With thin tails, a small experiment is
of limited value, as it is unlikely to move the experimenter away from her prior beliefs. With
fat tails, even small experiments can be valuable, because they can discover outliers.
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We use the theorem to formalize how the tails affect the optimal exper-
imentation strategy (corollary 1). With relatively fat tails (a < 3), lean ex-
perimentation strategies are optimal. This is intuitive, given that a large
share of the gains from experimentation comes from finding black swans
and that these outliers can be detected even with small experiments. In
contrast, with relatively thin tails (a > 3) and somewhat limited data, big-
data experimentation is optimal. Intuitively, with thin tails, it is very unlikely
that a small experiment will move the prior sufficiently to affect decision-
making. Therefore, it is best to run fewer, but more precise, experiments.
However, there is another, simpler reason for lean experimentation.

Allocating a large number of users to test a single idea has eventually de-
creasing returns. Therefore, when experimental resources are sufficiently
abundant, it is better to experiment on as many ideas as possible (re-
mark 1). We also present results on asymptotics for large experiments,
showing that marginal product decreases as 1=n2 (theorem 1).
Section IV applies our model to data from experiments at Microsoft

Bing’s EXP experimentation platform. EXP runs thousands of experi-
ments per year, with the average experiment in our data having about
20 million users. Our theoretical framework leads to an empirical Bayes
problem (Robbins 1964) in which the unobserved distribution of inno-
vation quality can be estimated from these data (see Zhang 2003 for a
recent review on empirical Bayes methods). We find both reduced-form
and structural evidence of fat tails. Our benchmark estimates for the key
metric used to evaluate innovations is of a tail coefficient considerably
smaller than 3. This result is statistically significant, robust to a number
of alternative specifications, and consistent with evidence from similar prod-
ucts. Thus, the data suggest that fat tails can be important, even in large,ma-
ture products such as Bing.
The estimates have three sets of implications for experimentation in

this setting. First, the fat tails affect the proper Bayesian updating of the
quality of an idea, given experimental results. Ideas with small t-statistics
should be shrunk aggressively, because they are likely to be lucky draws,
in contrast to outlier ideas. In particular, the top 2% of ideas are respon-
sible for 74.8%of the historical gains. This finding is an extreme version of
the usual 80-20 Pareto rule. Second, the marginal value of data for exper-
imentation is an order of magnitude lower than the average value but is
not negligible. Third, there are large gains frommoving toward a lean ex-
perimentation strategy. We consider a counterfactual where Bing experi-
ments on 20%more ideas, with themarginal ideas having the samequality
distribution, while keeping the same number of users. We find that pro-
ductivity would increase by 17.05%. Naturally, whether these gains can be
attained depends on the costs of running additional experiments. We per-
form a back-of-the envelope calculation using Bing’s monetary valuation
for quality improvements.Wefind thatmoving toward lean experimentation
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would be profitable even if the fixed costs of one experiment were of the
order of hundreds of thousands of dollars per year.
Section V presents additional results and robustness checks. First, we

use the empirical estimates to understand when each of our asymptotic
approximations is relevant. We find that the small-sample-size asymp-
totics of theorem 2 provide a reasonable approximation to the produc-
tion function in the Bing application.10 Second, we provide a number of
theoretical extensions: additional costs of experimentation (such as fixed
costs, variable costs, and user-experience costs), mutually exclusive ideas,
different payoffs after implementation (such as a hypothesis-testing pay-
off), an elastic supply of ideas, and alternative assumptions about exper-
imental noise. Third, we consider limited data on triage procedures used
at Bing to check whether marginal discarded ideas are worse than the av-
erage ideas tested. We find no evidence that the offline tests predict on-
line performance. Finally, we report that the empirical results are robust
to several alternative specifications.
II. The A/B Testing Problem

A. Model
A firm considers implementing potential innovations (or ideas) i ∈
f1, ::: , I g. The quality of innovation i is unknown and is modeled as a
real-valued random variable Di, whose values we denote di. The distribu-
tion of the quality of innovation i is Gi. Quality is independently distrib-
uted across innovations.
The firm selects the number of users, ni in R1, to experiment (i.e., A/B

test) innovation i.11 If ni > 0, the experiment yields an estimator, or sig-
nal, equal to a real-valued random variable D̂i, whose value we denote
d̂i. Conditional on the quality di of the innovation, the signal has a normal
distribution, with mean di and variance j2

i =ni. The signals are assumed
to be independently distributed across innovations. The firm faces the
constraint that the total number of allocated users oN

i51ni is at most equal
to the number of users N available for experimentation. The firm’s exper-
imentation strategy is defined as the vector n 5 ðn1, ::: , nI Þ.
After seeing the results of the experiments, the firm selects a subset S

of innovations to implement (or to “ship”) conditional on the signal
10 This is at first surprising, given that the typical sample sizes are in the order of millions
of users. But, in practice, user behavior is sufficiently noisy, relative to effect sizes, that Bing
is far from a case of perfect information. Instead, outliers are important, which is the key
approximation used in the asymptotic results for small sample sizes. In particular, in our
application, this suggests that the presence of fat tails determines lean experimentation,
as opposed to abundance of data.

11 The number of users is assumed to be in the positive real line, because we are inter-
ested in experiments with sample sizes in the millions.
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realizations of the innovations that were tested. Formally, the subset S of
innovations that are implemented is a random variable whose value is a
subset of {1, ..., I } and is measurable with respect to the signal realizations.
We also refer to S as the firm’s implementation strategy.
The firm’s payoff, which depends on both the experimentation and

implementation strategies, is the sum of the quality of implemented in-
novations. The A/B testing problem is to choose an experimentation
strategy n and an implementation strategy S to maximize the ex ante ex-
pected payoff,

Pðn, SÞ ; E o
i∈S
Di

� �
: (1)
B. Discussion
Considering how our model relates to the Bing search engine is helpful
in understanding our modeling choices. The potential innovations cor-
respond to the thousands of innovations that engineers propose every
year. Bing triages these innovations and selects a subset to A/B test (by
setting ni > 0). These innovations are typically A/B tested for 1 week,
with an average ni of about 20 million users.12 The number of users avail-
able for experimentation,N, is constrained by the total flow of user-weeks
in each year.13

We now discuss three importantmodeling assumptions. First, the gains
from implementingmultiple innovations are additive. This assumes away
the possibility of interaction effects between various innovations. Section V
demonstrates that allowing for mutually exclusive ideas does not change
the main message of the paper.14
12 It is common practice to require the duration of the experiments to be a multiple of
weeks in order to avoid fishing for statistical significance and multiple-testing problems;
see Kohavi et al. (2013), 1174. Also, treatment effects often vary with the day of the week,
so industry practitioners have found an experiment to be more reliable if it is run for in-
teger multiples of a week (Kohavi et al. 2009). While the timing in our model is simpler
than reality, it is closer to practice than the unrestricted dynamic experimentation in ban-
dit problems.

13 Our model is related to the standard multiarmed-bandit problem. The potential inno-
vations correspond to the bandit arms. The number of available users N corresponds to the
number of periods in the bandit problem. There are three key differences. First, the A/B
testing problem ignores the payoffs during the experimentation phase because, in practice,
they are dwarfed by payoffs after implementation. Second, multiple innovations can be im-
plemented. Third, the timing of the A/B testing problem is simpler: there are no dynamics.

14 The interaction effect between ideas was the subject of an early debate at the time
when A/B testing was initially implemented in major technology companies (Tang et al.
2010; Kohavi et al. 2013). The debate had twomain proposals. One of them was to runmul-
tiple parallel experiments and to analyze them in isolation, to increase sample sizes. The
other proposal—based on the idea that interactions between innovations could be impor-
tant—was to use factorial designs that measure all possible interactions. While both posi-
tions are theoretically defensible, the industry has gravitated toward parallel experiments. This
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Second, there is no explicit cost of running an experiment. This im-
plies that innovation ideas and data for experimentation are the scarce re-
sources. This assumption is for simplicity. Section V shows that introduc-
ing costs of experimentation does not change the main message of the
paper. However, some readers may find it counterintuitive that data are
scarce, given the large sample sizes in major platforms. This issue was
raised in early industry discussions about A/B testing, where some argued
that “there is no need to do statistical tests because . . . online samples were
in the millions” (Kohavi, Crook, and Longbotham 2009, 2). Despite this
intuitive appeal, this position has been discredited, and practitioners now
consider data to be scarce. For example, Deng et al. (2013, 124) say that
“Google made it very clear that they are not satisfied with the amount of
traffic they have . . . even with over 10 billion searches per month.” In ad-
dition, parallelized experiments are viewed as extremely valuable, which
can be the case only if data are scarce (Tang et al. 2010; Kohavi et al.
2013). This scarcity is due to the fact that large, mature platforms pursue
innovations with small effect sizes, often of a fraction of a percent increase
in performance (Deng et al. 2013).
Third, experimental errors are normally distributed. This is a reason-

able assumption in ourmain application because the typical estimator for
the unknown quality is a difference between sample means with indepen-
dently and identically distributed data, and treatment/control groups are
in the millions.
C. Assumptions and Notation
We assume that the distribution Gi has a finite mean and a smooth den-
sity gi with bounded derivatives of all orders and that gi(0) is strictly pos-
itive. These assumptions are maintained throughout the paper, unless
otherwise stated.
We use the following notation. Two functions h1 and h2 are asymptotically

equivalent as n converges to n0 if

lim
n→ n0

h1ðnÞ
h2ðnÞ 5 1:

This is denoted h1∼n0
h2, and we omit n0 when there is no risk of confusion.

Given a sample size ni > 0 for experiment i and signal realization d̂i ,
denote the posterior mean of the quality Di of innovation i

Piðd̂i, niÞ ; E½Di jD̂i 5 d̂i ; ni�:
was due to the finding that interactions were of second-order importance relative to the value
of parallelization.
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If ni 5 0, we abuse notation and define Piðd̂i, niÞ as the unconditional mean
of Di.
Because the experimental noise is normally distributed, it is known

that Pi(⋅, ni) is smooth and strictly increasing in the signal, provided
that ni > 0. Moreover, there is a unique threshold signal d*i ðniÞ such that
Piðd*i ðniÞ, niÞ 5 0 (see lemma A.1).
III. Theoretical Results

A. The Optimal Implementation Strategy
The optimal implementation strategy is simple. The firm observes the
signal d̂i , calculates the posterior mean Piðd̂i, niÞ using Bayes’s rule, and
implements innovation i if this posterior mean is positive. We formalize
this immediate observation as the following proposition.
Proposition 1 (Optimal implementation strategy). Consider an ar-

bitrary experimentation strategy n and an implementation strategy S*

that is optimal, given n. Then, with probability one, innovation i is imple-
mented iff the posterior mean innovation quality Piðd̂i, niÞ is positive.
The proof of this proposition and all of our theoretical results are col-

lected in the appendix. In practice, the most common implementation
strategy is to implement an innovation if it has a statistically significant
positive effect at a standard significance level, typically 5%.Other versions
of this strategy adjust the critical value to account for multiple-hypothesis
testing problems. Proposition 1 shows that these approaches are not opti-
mal. Instead, it is optimal to base implementation decisions on the poste-
rior mean.
Fat tails can have a substantial impact on the posterior mean function.

To illustrate this point, figure 1 plots the posterior mean function for a
fat-tailed prior with a t-distribution with a small, negative mean. With this
fat-tailed prior, the posterior mean function is flat when close to zero, so
that typical observations with small t-statistics should be considerably
shrunk. This flatness could be explained by the fact that good results are
likely to be due to lucky experimental draws. However, for large outliers,
the posterior mean function approaches the diagonal. Intuitively, fat tails
and normal experimental noise imply that large outliers are likely to be
due to idea quality.15We return to this issue below when we discuss our em-
pirical findings. Online appendix G (in addition to the appendix below,
15 See Morris and Yildiz (2016) for similar results in a coordination game. See also fig. 4.4
in Armagan, Dunson, and Lee (2013) for an example in which the posterior mean function
based on a fat-tailed prior shrinks the data realization very similarly to the LASSO (least ab-
solute shrinkage and selection operator) estimator. Figure 1 also echoes the recent findings
in Abadie and Kasy (2019), who show that different prior distributions in the Gaussian loca-
tion model alter the ranking of regularized estimators.
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appendixes A–I are available online) presents plots of the posterior mean
for different sample sizes and for different degrees of freedom.
B. The Production Function
The value of potential innovation iwith no data equals itsmean, provided
that it is positive,

E½Di�1:
If the firm combines innovation i with data from ni users, then the firm
can run the experiment and will implement the idea only if the posterior
mean quality is positive. By proposition 1, the total value of A/B testing
innovation i is the expected value of the positive part of the posteriormean,
that is,

E½PiðD̂i , niÞ1�:
Thus, the value of investing data from ni users into potential innova-

tion i equals

fi ðniÞ ; E½PiðD̂i , niÞ1� 2 E½Di�1: (2)

We term fi(ni) the production function for potential innovation i. We
term f 0

i ðniÞ the marginal product of data for i. With this notation, the firm’s
payoff can be immediately decomposed as follows.
FIG. 1.—Posterior mean function Piðd̂i , niÞ. The figure assumes a prior with a Student t-
distribution and parameters equal to our benchmark empirical estimates from section IV.
The parameter ji is set to the average in the data, and ni is set to the typical value of 20 mil-
lion users, so that the standard error ji=ðniÞ1=2 is 0.022.
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Proposition 2 (Production function decomposition). Consider an
arbitrary experimentation strategy n and an implementation strategy S
that is optimal, given n. Then the firm’s expected payoff is

Pðn, SÞ 5 o
i∈I
E½Di �1|fflfflfflfflffl{zfflfflfflfflffl}

value of ideas with no data

1 o
i∈I
fi ðniÞ|fflfflfflffl{zfflfflfflffl}

additional value from data

:

That is, the payoff equals the sum of the gains from innovations that are
profitable to implement even without an experiment, plus the sum of the
production functions of the data allocated to each experiment. The pro-
duction functions are differentiable for ni > 0.
This straightforward decomposition reduces the A/B testing problem

to a constrained maximization of the sum of the production functions.
Therefore, the shape of the production function is a crucial determinant
of the optimal innovation strategy. Figure 2 plots the production func-
tion with illustrative model primitives for sample sizes up to 40 million
users. Panel B depicts the case of a normal prior. Panel A depicts the case
of a fat-tailed t-distribution, for varying tail coefficients. The figure shows
that the production function can have either increasing or decreasing
returns to scale and that the shape of the production function depends
on the tail coefficients of the prior distribution.
C. Main Results: Shape of the Production Function
This section develops our main theoretical results, which characterize the
shape of the production function (and consequently speak to the optimal
experimentation strategy). Throughout this subsection, we consider a sin-
gle innovation and omit the subscript i for clarity. To describe the optimal
implementation strategy, define the threshold t-statistic t*(n) as the t-statistic
associated with the threshold signal, t*ðnÞ 5 d*ðnÞ=ðj= ffiffiffi

n
p Þ. We remind

the reader that d*i ðniÞ is defined as the unique threshold signal such that
Piðd*i ðniÞ, niÞ 5 0.
We establish two theorems. The first theorem characterizes the produc-

tion function for very large sample sizes (large-n approximation), in the
limit where the experiment is much more informative than the prior.
Theorem 1 (Production function for largen). Considern converging

to infinity. We have the following:
1. The threshold t-statistic t*(n) converges to 0. Moreover, if g 0ð0Þ ≠ 0,

then

t*ðnÞ ∼ 2
jffiffiffi
n

p � g
0ð0Þ
g ð0Þ :

2. Marginal products converge to 0 at a rate of 1=n2. More precisely,

f 0ðnÞ ∼ 1

2
� g ð0Þ � j2 � 1

n2 : (3)
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The theorem shows that, for very large samples, the marginal product
of additional data declines rapidly. Moreover, this holds regardless of the
specifics of the distribution of ideas, which affect the asymptotics only up
to a multiplicative factor. The intuition is that additional data help to
FIG. 2.—Production function f(n) with and without fat tails. The figures plot the pro-
duction function as a fraction of the value of perfect information, f ðnÞ=f ð∞Þ. A depicts
a Student t-prior, and B depicts a normal prior. The t-distribution parameters correspond
to the benchmark empirical estimates in section IV.E for our main metric, but with varying
tail coefficients. The normal prior has the same mean and scale parameters. The parame-
ter ji is set to the average value in the data. A color version of this figure is available online.
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resolve only edge cases, where the value of an innovation is close to 0.
Mistakes about these cases are not very costly, because even if the firm
gets them wrong the associated loss is small.16

The intuition of the proof is as follows. Lemma A.2, in the appendix,
shows that, for all n, the marginal product equals

f 0ðnÞ 5 1

2n
� mðd*ðnÞ , nÞ � Var DjD̂ 5 d*ðnÞ� �

, (4)

where m(⋅, n) is the marginal distribution of the signal D̂. The marginal
product depends in an intuitive way on the elements of this formula. It is
more likely that additional data will be helpful if the existing estimate
has few data points n, if the likelihood m(d*(n), n) is large, and if there
is a lot of uncertainty about quality conditional on the marginal signal.
The proof gives further intuition of why the exact formula holds. We then
proceed to show that mðd*ðnÞ , nÞ � Var½DjD̂ 5 d*ðnÞ� ∼ g ð0Þj2=n2. Intui-
tively, this result can be thought of as a consequence of the Bernstein-
vonMises theorem, which says that Bayesian posteriors are asymptotically
normal with the same mean and variance as the maximum likelihood es-
timator. This implies that the threshold d*(n) is close to zero and that the
conditional variance in equation (4) is j2=n. Thus, the general formula (4)
simplifies to the asymptotic formula (3). The formula for the thresh-
old t-statistic is derived from an asymptotic version of Tweedie’s formula
(corollary A.1).
Theorem 1 may hold only for extremely large sample sizes. For exam-

ple, in figure 2, even experiments with tens of millions of users generate
only a fraction of the value of perfect information. The theorem implic-
itly relies on a Bernstein-von Mises-type approximation where there is so
much data that the prior is uninformative. This happens only when the
experiments are much more precise than the variation in the quality of
ideas. Even large platforms such as Bing are far below this scale, as in the
anecdotal evidence cited in section II.B and the empirical evidence we
give below.
Matters are different for small n, where the shape of g has dramatic ef-

fects on the shape of f. The following theorem shows that, if the ex ante
distribution of idea quality has Pareto-like tails, the marginal product is
determined by the thickness of the tails.17
16 This argument echoes themes developed by Vul et al. (2014) for more special distri-
butions and by Fudenberg, Strack, and Strzalecki (2017) in a dynamic learning context.
Moscarini and Smith (2002) and Keppo, Moscarini, and Smith (2008) find that, in models
with a finite number of states of the world, the value of information decays exponentially
for large n. This difference is due to the fact that we have an infinite number of states and a
strictly positive density g(0).

17 The probability density functions (pdfs) covered by theorem 2 include the general-
ized Pareto density of Pickands (1975), affine transformations of the t-distribution (which
is the model used in our empirical application), and any distribution where the tails are
Pareto, Burr, or log gamma.
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In a slight abuse of terminology, we say that a positive function c(⋅) is
slowly varying if limjdj→∞cðldÞ=cðdÞ→ 1 for any l > 0. Examples include
constant functions, logarithmic functions, and others.
Theorem 2 (Production function for small n). Assume that the dis-

tribution of innovation quality satisfies g ðdÞ ∼ acðdÞ � jdj2ða11Þ as d con-
verges to ±∞, where c(d) is a slowly varying function, a > 1, and a ≠ 3. As-
sume that there is a constant C > 0 such that cðdÞ > C for large enough
FdF. Assume also that E½D� < 0, and consider n converging to 0. We have
the following:

1. The threshold t-statistic t*(n) converges to infinity at a rate of
ðlog 1=nÞ1=2. More precisely,

t*ðnÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða 2 1Þ log jffiffiffi

n
p

r
:

2. Marginal products are roughly proportional to nða23Þ=2. More
precisely,

f 0ðnÞ ∼ 1

2
� acðd*ðnÞÞ � ðjt*ðnÞÞ2ða21Þ � n a23ð Þ=2:

3. If the tails of g are sufficiently thick (a < 3), then the marginal
product at n 5 0 is infinity.

4. If the tails of g are sufficiently thin (a > 3), then the marginal
product at n 5 0 is zero.
The theorem states that, for small n, f 0(n) behaves approximately pro-
portional to nða23Þ=2. This behavior determines the marginal returns of
the production function in small A/B tests. Much as in neoclassical pro-
ducer theory, this behavior is crucial for the optimal experimentation
strategy. With relatively thin tails (a > 3), marginal products are increas-
ing (and zero at n 5 0), and we have increasing returns to scale. With
relatively thick tails, marginal products are decreasing (and infinite at
n 5 0), so that we have decreasing returns to scale. These cases are illus-
trated in figure 2.
The intuition for the theorem is as follows. If g is not sufficiently fat

tailed, a > 3, then a small bit of information is unlikely to change the op-
timal action, as it is too noisy to overcome the prior. A bit of information
is therefore nearly useless. Only once the signal is strong enough to over-
come the prior, information starts to become useful, which implies that
the value of information is convex for small sample sizes. This intuition
has been formalized in a classic paper by Radner and Stiglitz (1984). They
consider a setting that is, in some ways, more general but that precludes
the possibility of fat tails. Because they assume away fat tails, they conclude
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that the value of information is generally convex for small n. Our theorem
shows that their conclusion is reversed in the fat-tailed case.18

Our theorem shows that if a < 3, most of the value of experimentation
comes from a few outliers, and even extremely noisy signals will suffice to
detect them. More precise signals will help detect smaller effects, but if
most of the value is in themost extreme outliers, such smaller effects have
quickly diminishing value. Thus, the value of information is concave for
small n.
At first sight, it is not clear why the dividing line is a 5 3. As it turns

out, a 5 3 can be explained with a simple heuristic argument. Consider
a startup firm that uses a lean experimentation strategy. The firm tries
out many ideas in small A/B tests, in hopes of finding one idea that is
a big positive outlier. Even though the A/B tests are imprecise, the firm
knows that, if a signal is several standard errors above themean, it is likely
to be an outlier. So the firm decides to implement only ideas that are, say,
5 standard errors above the mean. This means that the firm will almost
certainly detect all outliers that are more than, say, 7 standard errors
above the mean. This yields value

f ðnÞ ∝
ð∞
7j=

ffiffiffi
n

p dg ðdÞ dd ∝
ð∞
7j=

ffiffiffi
n

p dd2ða11Þ dd 5

ð∞
7j=

ffiffiffi
n

p d2a dd:

Integrating, we get

f ðnÞ ∝ 1

a 2 1

7jffiffiffi
n

p
� 	2 a21ð Þ

∝ n a21ð Þ=2:

Thus, the marginal product is proportional to nða23Þ=2, as in the theorem.
The proof of the theorem formalizes and generalizes this heuristic.

The first step is showing that the first-order condition for the optimal
threshold and the marginal products can be written as integrals. These
integrals are dominated by regions where either quality is in the mean
of its distribution, but the signal is extreme, or the signal is in the middle
of its distribution, but the true quality is extreme. This implies that these
integrals can then be approximated by closed-form expressions, because
of the power-law assumption. The theorem can then be derived using cal-
culations in the lines of the heuristic argument.
18 One reason for the difference between our result and that of Radner and Stiglitz (1984)
is the units of information that they use. In their leading example (p. 40), they measure the
quantity of information by the correlation between a signal and the state, which is roughly
proportional to

ffiffiffi
n

p
. The value of information in their example is roughly proportional to

n, so that, as they explain, the convexity result depends on the units. However, allowing
for fat tails is themain reason for the different results. Chade andSchlee (2002) explain that,
even when information is measured by n, the convexity result depends on substantial as-
sumptions. Nevertheless, they show that convexity does hold with some generality. And
Keppo, Moscarini, and Smith (2008) find a convex value of information in a natural model
with thin tails. Our result clarifies that one practically important reason why we can have a
concave value of information close to zero is the existence of fat tails.
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The heuristic argument clarifies why the small-n approximation can
be useful for sample sizes in real-world applications that often includemil-
lions of users. As long as outlier ideas are responsible for a large share of the
total gains., the small-n approximation will be useful. Indeed, section V.A
shows that, in our empirical application, the approximations in theo-
rem 2 are useful for the typical sample sizes of tens of millions of users.
D. The Optimal Experimentation Strategy
We now use the results to understand the optimal experimentation strat-
egy. The simplest case is when experimental resources are abundant, so
that information is close to perfect. That is, the case where N converges
to infinity.
Remark 1. If N is large enough, then it is optimal to run experiments

on all ideas (i.e., it is optimal to “go lean”).
With plentiful data, it is optimal to experiment on every idea, because

the returns to data are eventually decreasing. This follows from the fact
that the production function is increasing and is bounded by the value
of perfectly observing idea quality. For example, all of the production
functions in figure 2 are eventually bounded by 100% of the value of per-
fect information. Thus, allocating a large number of users to a single idea
eventually has small returns, and it is therefore better to experiment on as
many ideas as possible.
Assuming that experimental resources are abundant is equivalent to

assuming that there are enough users to make the noise of each A/B test
almost negligible. The following corollary characterizes the optimal ex-
perimentation strategy when the outcome of an A/B test does not fully
reveal the innovation quality.
Corollary 1 (Optimal experimentation strategy). Assume that all

ideas have the same prior distribution of quality, that this distribution sat-
isfies the assumptions of theorem 2, and that there is more than one idea.

• If the distribution of quality is sufficiently fat tailed, a < 3, it is op-
timal to run experiments on all ideas (that is, it is optimal to “go
lean”).

• Suppose, in addition, that the slowly varying function in theorem 2
satisfies cðdÞ→ c as d→∞. If the distribution of quality is sufficiently
thin tailed, a > 3, and if N is sufficiently small, the firm should allo-
cate all experimental resources to one idea (i.e., it is optimal to “go
big”).
The corollary relates the experimentation strategy to the tail of the dis-
tribution of innovation quality. If the distribution of innovation quality is
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sufficiently thin tailed, then most ideas are marginal improvements.
The production function is convex close to n 5 0, because obtaining
a small amount of data is not sufficient to override the default imple-
mentation decision. In this case, it is optimal to choose only one idea
and run a large, high-powered experiment on it. We call this strategy
big-data A/B testing, as it involves ensuring that the experiment has a
large enough sample to detect fairly small effects. This strategy is in
line with common practice in many large technology companies, where
ideas are carefully triaged and only the best ideas are taken to online A/
B tests.
If the distribution of innovation quality is sufficiently fat tailed, a few

ideas are large outliers, with very large negative or positive impacts.
These are commonly referred to as black swans, or as big wins when they
are positive. The production function is concave and has an infinite de-
rivative at n 5 0. The optimal innovation strategy in this case is to run
many small experiments and to test all ideas. We call this the lean exper-
imentation strategy, as it involves running many cheap experiments in the
hopes of finding big wins (or avoiding a negative outlier). This strategy
is in line with the lean startup approach, which encourages companies
to quickly iterate through many ideas, experiment, and pivot from ideas
that are not resounding successes (Blank 2013).
IV. Empirical Application

A. Setting
We now apply the model to a major experimentation platform, Micro-
soft’s EXP. This is an ideal setting because we have detailed data on thou-
sands of A/B tests that have been performed in the past few years. We can
use the data to estimate the ex ante distribution of innovation quality and
thus understand the importance of fat tails and the optimal experimenta-
tion strategy.
EXP was originally part of the Bing search engine but has since ex-

panded to help several other products within Microsoft. This expansion
coincides with the rise of A/B testing throughout the technology industry
due to the proliferation of cloud-based software. Traditional client-based
software, such as Microsoft’s Word and Excel, runs locally on users’ com-
puters. Formerly, innovations were evaluated offline by product teams and
implemented in occasional software updates. By contrast, cloud-based soft-
ware, such as Google, Bing, Facebook, Amazon, and Uber, mostly runs on
server farms. In these cloud-based products, most innovations are eval-
uated using A/B tests and are developed and implemented at scale in
an agile workflow. These practices have become ubiquitous in the technology
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industry, and even traditional software products such as Microsoft Office
now use A/B testing.
EXP runs thousands of A/B tests per year. Our empirical analysis fo-

cuses on Bing, which is itself a large product. Bing has revenues of the or-
der of 7 billion USD per year andmakes comparable investments in engi-
neering. Bing serves over 12 billion monthly searches worldwide. In the
United States, Bing had 136 million unique searchers in 2017, with about
a one-third market share in the PC market.19

There are three key empirical challenges to obtaining reliable estimates
of the distribution of innovation quality. First, the distribution gi repre-
sents the prior information about idea i. Thus, to estimate gi, even with
perfect observations of the realized true quality di, we need many observa-
tions of ideas that engineers perceive as coming from the same distribu-
tion. To illustrate this problem, imagine that engineers test a set of ideas
that look promising and have a distribution g1 and a set of ideas that look
unpromising and have a distribution g2. If we do not observe which ideas
are promising and which are unpromising, we would incorrectly think
that the ex ante distribution of ideas is an average of g1 and g2.
A second challenge is that many online A/B tests have potential data

issues, in that they are experimental flukes. These data issues arise from
the fact that runningmany parallel A/B tests in amajor cloud product is a
difficult engineering problem. The simplest examples are failures of ran-
domization, which can be detected when there is a statistical difference
between thenumber of users in treatment and control groups.20 This kind
of measurement error can bias estimates of the distribution of innova-
tion quality. For example, if true effects are normally distributed but ex-
perimental flukes produce a few large outliers, a researcher may incor-
rectly conclude that the distribution of true effects is fat tailed.
A third challenge is that our model assumes that innovations can be

identified by a single quality metric that is additive across different inno-
vations. However, in practice, there are multiple possible performance
measures that can be used. It is also not unreasonable to assume that some
innovations can be complements or substitutes.
19 Based on 2017 Comscore data and onMicrosoft’s form 10Q for the quarter ending on
March 31, 2018.

20 Many other, more complex experimental problems commonly occur. For example,
Bing caches the first few results of common queries. For the experiments to be valid, every
user has to cache the data for all the versions of all the experiments that she takes part in,
even for the treatments that she will not be exposed to. This adds a cost to the experimen-
tation platform, since it slows down the website as a whole and creates a challenge to running
a valid experiment. As a final example, consider a treatment that slows down a website. This
treatment could cause an instrumentation issue if it makes it easier for clicks to be detected.
So, even if the treatment worsens user experience, it could seem to be increasing engage-
ment, only because it made it easier to detect clicks (Kohavi and Longbotham 2011).
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B. Data Construction
We have detailed data on the universe of experiments that EXP ran on
Bing from January 2013 to June 2016. The data include dates; areas ex-
perimented; experimental results of thousands of metrics disaggregated
across dimensions such as geography, language, and device types; details
about the experimental procedure; comments; and the identity of the
owner of the experiment.
To alleviate the empirical problems above, we restricted our sample in

four ways. First, we restricted attention to relatively homogeneous areas,
because engineers consider the prior on ideas to be ex ante homoge-
neous.21 Second, we restricted attention to experiments that are similar to
the basic version of our model.22 Third, to ensure high data quality, we re-
stricted attention to the US market and dropped A/B tests with signs of
experimental problems. Fourth, we restricted attention to user-experience
areas so that idea quality is well summarized by a few key metrics. See the
online appendix for further details.
The main quality measure we consider is a proprietary success metric

that we call “session success rate” or simply “success rate.”The success rate
for a user is the proportion of queries where the user found what she was
looking for. This measure is calculated from detailed data on user behav-
ior. The success rate is a good overall measure of performance and plays a
key role in the decision to implement an idea at scale. While our main
analysis uses success rate, we also consider some of the following addi-
tional metrics in robustness and placebo analyses.
First, we consider three alternative metrics based on short-run user in-

teractions, much like success rate. We refer to them as “alternative short-
runmetrics 1, 2, and 3.” These metrics help us validate our methodology,
because qualitative results should be similar to the results for success
rate. We consider two long-run metrics, which measure overall user en-
gagement. We refer to them as placebo “long-runmetrics 1 and 2.”While
engineers consider long-run metrics to be more important, it is difficult
to detect movements in these metrics. It is for this reason that most ship-
ping decisions are based on short-run metrics such as success rate. We
21 Engineers currently view ideas on a relatively even footing because of their previous
experience with A/B tests. Previous A/B tests revealed that it is very hard to predict which
innovations are effective ex ante, and sometimes the best innovations come from unex-
pected places. Kohavi, Crook, and Longbotham (2009) and Kohavi et al. (2013) describe
their experience running experiments at Bing as “humbling.” One of their major tenets is
that “we are poor at assessing the value of ideas” (Kohavi et al. 2013, 1170). They give sev-
eral examples of teams in other companies that have reached similar, if not even more ex-
treme, conclusions. The fact that engineers view ideas as homogeneous is consistent with
their decisions on what to implement. Bing bases the decision on whether to implement
each idea on an objective shipping criterion based on the experimental results.

22 We dropped, e.g., experiments with multiple treatments or that applied only to nar-
row areas.
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use these metrics as placebos to validate our methodology, because they
should have a small amount of signal relative to the experimental noise,
and consequently experiments should have limited value. All of the met-
rics that we use are measured at the user level, which is the level of ran-
domization in the experiments. While thesemetrics are in different units,
engineers commonly consider percentage improvements. Thus, we de-
fine the delta of a metric in an experiment as the raw effect size divided
by the control mean, reported as a percentage. In the remainder of the
paper, we use deltas to analyze experiments across all metrics. We refer
to the sample delta in a metric in an experiment, or signal, as the sample
estimate of thepercentage improvement. This corresponds to the signal d̂i
in the theoretical model.
Finally, we performed a detailed audit on the data. We contacted the

owners of all experiments in the tails of the outcome distribution and
the owners of a random sample of experiments in the head of the distri-
bution. We used this audit to weed out experiments that we considered
to be minor tweaks of the same idea or that owners considered to be un-
reliable because of potential data issues. Ultimately, we found that 50%
of the audited observations were concerning.
To be conservative, we estimate our model in two ways. The first is a

standard maximum likelihood estimator that ignores potential data con-
cerns (except for dropping invalid observations). The second is a weighted
maximum likelihood strategy that weights each observation by its reli-
ability (where the reliability is estimated using the audit data).23 These
two estimators yield similar results (fig. C.3; figs. C.1–C.3, D.1–D.3, E.1,
E.2, G.1, H.1, H.2, and I.1 are available online). For this reason, we re-
port the standardmaximum likelihood estimator in the body of thepaper.
Online appendix C derives the theoretical properties of the alternative
estimator, gives further details on the audit data, and reports the results.
C. Descriptive Statistics
Table 1 displays summary statistics, at the level of experiments. The table
reveals three striking facts. First, Bing conducts large experiments, with
the average experiment having about 20 million subjects. This reflects
both that Bing has a substantial number of active users and that experi-
ments are highly parallelized. These large sample sizes are translated in
precise estimation of all metrics. For example, the average standard error
for success rate is only 0.029%.
23 In the appendix, we show that theweightedmaximum likelihood estimator is consistent
and asymptotically normal in a model where the data are a mixture of the distribution of in-
terest an a nonparametric distribution for the observations with data reliability concerns.
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Second, the effect sizes of the studied interventions are also small. The
mean sample deltas are close to zero, for all metrics. The standard devi-
ation of the sample delta for success rate is only 0.036%. This reflects the
fact that Bing is a mature product, and therefore it is difficult to generate
innovations that have a very large impact on overall performance on their
own. Even though the effects are small in terms of metrics, they are con-
sidered important from a business perspective. Practitioners consider
that the value of a 1% improvement in success rate is of the order of hun-
dreds ofmillions of dollars. Thus, even gains of the order of 0.1% are sub-
stantial and worth considerable engineering effort.
Third, the summary statistics suggest that the distribution of measured

effects is fat tailed. Many experiments have very small measured deltas,
while a handful show substantial gains. This can be seen in the histogram
in figure 3A. The summary statistics display signs of fat tails. For all metrics,
the largest absolute-value deltas are several standard deviations away from
the mean.
Figure 4 displays a log-log plot of the tail distribution of sample delta.

That is, we plot the log of the rank of each observation versus the log of
the observation. Log-log plots are a standard way to visualize fat-tailed
distributions. If the variable d̂i has a Pareto distribution with tail parame-
ter a, then, with infinite data, the log-log plot is a straight line with a slope
of negative a. Consistent with fat tails, figure 4 displays slopes that are
relative small. Indeed, we simulated data with the same sample size and
variance, but coming from a normal distribution, and found substantially
TABLE 1
Summary Statistics: Experiments (N 5 1,450)

Mean Minimum Maximum
Standard
Deviation

Interquartile
Range

No. of subjects 19, 447, 892 2, 005, 051 125, 837, 134 16, 539, 352
Duration (days) 10.84 7.00 28.00 4.69
Probability valid .52 .25 1.00 .10
Sample delta (%):
Success rate 2.001 2.220 .283 .036 .035
Short-run metric 1 2.003 2.234 .345 .035 .033
Short-run metric 2 2.019 211.614 3.289 .434 .139
Short-run metric 3 2.004 2.465 .504 .066 .058
Long-run metric 1 .001 22.157 .669 .157 .153
Long-run metric 2 .002 2.565 .432 .084 .090

Sample delta standard
error (%):

Success rate .029 .009 .091 .013
Short-run metric 1 .025 .009 .072 .011
Short-run metric 2 .103 .035 .271 .040
Short-run metric 3 .044 .012 .120 .020
Long-run metric 1 .158 .045 .459 .075
Long-run metric 2 .092 .030 .255 .044
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higher slopes. Log-log plots suffer from well-known problems in finite
samples (Clauset, Shalizi, and Newman 2009). For that reason, we use the
log-log plots to transparently describe the data, but the slopes are not
a reliable method to estimate the precise tail coefficients. Thus, we use a
maximum likelihood procedure for our benchmark estimates.
FIG. 3.—Model fit. Histogram (A) and Q-Q plot (B) showing the raw data on measured
deltas in success rate and the fit of the benchmark model estimates. A color version of this
figure is available online.
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D. Identification and Maximum Likelihood Estimation
Fix a metric of interest (e.g., success rate). We would like to estimate the
metric’s ex ante distribution of innovation quality, which is the key pa-
rameter of our model (and which we henceforth denote succinctly as
the density g). In the A/B testing problem, there are at least two functions
of g that are empirically relevant. The first relevant function is the pos-
terior mean of di, given d̂i, which provides the optimal estimator (from
a decision-theoretic perspective) for the unobserved quality of idea i.
The second relevant function is the optimal experimentation strategy
n(g), which is defined as the experimentation strategy that maximizes
the firm’s expected payoff subject to user availability.
Our empirical strategy is to use the outcomes of the different A/B tests

to estimate g. We then construct “plug-in” estimators of the functions of g
that are relevant in the A/B testing problem. For example, if ĝ denotes
the estimator of g, then nðĝ Þ is the plug-in estimator of the optimal ex-
perimentation strategy. These types of procedures are usually called “em-
pirical Bayes estimators,” as the prior is estimated from the data.24

To formalize our strategy, we start by summarizing each A/B test i af-
fecting the corresponding metric, using the triplet
FIG. 4.—Log-log plots of the tails of the distribution of sample deltas. Each figure plots,
in a log-log scale, the rank of the absolute value of sample deltas, versus the absolute value
of sample delta jd̂i j. Each panel corresponds to a metric. Each plot has 150 observations,
and the 15 largest observations are used to calculate the slope. A color version of this figure
is available online.
24 Azevedo et al. (2019) reviewparametric andnonparametric empirical Bayes approaches
to estimate the distribution of unobserved quality, given previous outcomes of A/B tests.
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ðd̂i, ji, niÞ, (5)

where d̂i denotes the estimated delta of idea i, ji=ðniÞ1=2 is the estimated
standard error, and ni is the sample size.25

Following the theoretical analysis from section III, the distribution of
d̂i is given by a two-stage hierarchical model:26

di is distributed according to g , and (6)

d̂ijdi is distributed asNðdi , j2
i =niÞ: (7)

That is, given the true quality di, the estimator d̂i is normally distributed
with known variance. This is a reasonable assumption because of the
large sample sizes in each experiment. This also implies that the standard
estimate for the sample variance is consistent and precisely estimated rel-
ative to treatment effects. It can be shown that the prior g is nonpara-
metrically identified (online app. B).
Maximum likelihood estimation.—Although the ex ante distribution of

idea quality, g, is nonparametrically identified, we estimate our model
imposing parametric restrictions on g.27 In particular, we assume that

d ∼ M 1 s � ta, (8)

where M ∈ R, s ∈ R1, and ta is a t-distributed random variable with a de-
grees of freedom. This means that we can write the second stage of our
hierarchical model as

d has distribution g ð�; bÞ, with b ; ðM , s, aÞ0,
and the parametric likelihood of each estimate d̂i as the mixture density

mðd̂ijb; ji , niÞ 5
ð∞
2∞
f d̂i ; d, ji= nið Þ1=2
 �

g ðd, bÞ dd: (9)
25 For notational simplicity—and given that we estimate the ex ante distribution of idea
quality separately for each metric—we omit the use of subscript m throughout this section.

26 Hierarchicalmodels are used extensively in Bayes and empirical Bayes statistical analysis
(see chaps. 2 and 3 in Carlin and Louis 2000). Two-stage hierarchical models are also known
as “mixture models” (Seidel 2015), where g is typically called the “mixing” distribution.

27 The default approach for doing nonparametric estimation of g in the mixture model
given by eqq. (6) and (7) is the infinite-dimensional maximum likelihood estimation rou-
tine suggested by Kiefer and Wolfowitz (1956) and refined recently by Jiang and Zhang
(2009). It is known (see theorem 2 in Koenker and Mizera 2014), that the nonparametric
maximum likelihood estimator of g, given a sample of size n, is an atomic probability mea-
sure with no more than n atoms. The tails of an atomic probability measure are never fat,
even if the true tails of g are. It is for this reason that we decided to follow a parametric
approach for the estimation of g.
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In the equation above, fð�; d, ji=ðniÞ1=2Þ denotes the pdf of a normal ran-
dom variable with mean d and variance j2

i =ni.
Now, we write the likelihood for the results of n different A/B tests:

d̂ 5 ðd̂1, d̂2, ::: , d̂nÞ:
If we assume that each estimator d̂i is an independent draw of the model
in equation (9), then the log likelihood of d̂, given the parameter b and
the vector of standard errors j ; ðj1=ðn1Þ1=2, j2=ðn2Þ1=2, ::: , jn=ðnnÞ1=2Þ is
given by

logmðd̂ jb; jÞ ; o
n

i51

logmðd̂i b; ji, niÞ:j (10)

The maximum likelihood (ML) estimator, b̂, is the value of b that max-
imizes the equation above. Note that the likelihood in equation (10) cor-
responds to a model with independent, not identically distributed data.
Sufficient conditions for the asymptotic normality of the ML estimator
for b are given in Hoadley (1971).28
E. Estimation Results
Themodel fits the data well. Figure 3A displays a Q-Q plot, and figure 3B
compares the fitted and actual histograms for success rate. The esti-
mated parameters are given in table 2 and figure 5.
Our main empirical result is that idea quality is fat tailed, with a tail co-

efficient far below the a 5 3 threshold in theorem 2. The tail coefficient
for success rate is 1.31 (which is not very different from Hill’s tail-index
estimator reported in the online appendix). The hypotheses that a 5 3
and a 5 2 are both rejected with a p-value of less than .001.
This result is supported by three additional facts. First, the tail coeffi-

cients are similar for all short-termmetrics. Second, our result is consistent
with findings of fat tails in data from similar large cloud products from
Facebook and Ebay experiments (Peysakhovich and Lada 2016; Goldberg
and Johndrow 2017; Peysakhovich and Eckles 2017; Coey and Cunning-
ham 2019). Third, we show in online appendix E that the key finding of
fat tails is robust to disaggregating the data across a number of dimensions,
28 The conditions in Hoadley (1971) essentially require that the first and second deriv-
atives of the log likelihood with respect to b be well defined.
It is also possible to follow a fully Bayesian approach for the estimation of the parameters

of the model. To do this, one could complete the Bayesian hierarchy by choosing a prior
for the hyperparameters of the model b ; ðM , s, aÞ. The outcomes of the A/B tests then
allow us to get posterior distributions over b. Since each b is associated with a posterior
mean for Di (for each treatment), the following procedure provides a natural Bayesian es-
timator for the effect of a specific treatment: generate posterior draws of b, evaluate the
posterior mean of Di for each draw, and then average across draws.
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s-
uch as across budget areas. This assuages concerns that our results could
be driven by the fact that our estimation incorrectly pools ideas that engi-
neers see as being ex ante different.
There are two facts that suggest that the coefficient estimates are rea-

sonable. First, the estimates are qualitatively similar across all short-run
metrics. The mean idea qualityM is always a small negative number. Sec-
ond, the placebo long-run metrics have parameters that imply that there
is very little signal relative to noise. This can be seen from the low values of
the scale parameter s.29 Online appendix F shows that, for long-run met-
rics, typical experiments should hardly update the posterior mean and
that the value of experimentation is very low. Meanwhile, the short-run
metrics have results qualitatively similar to those for success rate. This is
consistent with long-runuser behavior beingmore difficult to change than
short-run user behavior. It is also consistent with Bing engineers’ view that
it is difficult to generate detectable movements in long-run metrics.
F. Implications
We now discuss three key implications of the theoretical and empirical re-
sults.Weuse thebenchmarkparameter estimates for success rate. Through-
out this section, we illustrate results with a typical experiment. We use
29 T
long-r
sults i
matrix
TABLE 2
Maximum Likelihood Estimates

a M s

Success rate (SR0) 1.31** 2.000946 .00296
(.149) (.000647) (.000861)

Short-run metric 1 1.35** 2.00136 .00413
(.14) (.000667) (.000912)

Short-run metric 2 .887** 2.0067 .0089
(.089) (.00277) (.0028)

Short-run metric 3 1.43** 2.00365 .00988
(.135) (.00108) (.00161)

Long-run metric 1 3.03 .00161 2.21E205
(.14) (.000667) (.000912)

Long-run metric 2 3.04 .00106 2.51E206
(.0916) (.00209) (.00277)
hese estimates should be interpret
un metrics are close to zero, which
n Andrews (1999) suggest that the
might be conservative.
ed carefully becau
is the boundary o
standard errors ba
se the estimated valu
f the parameter spac
sed on the Fisher in
Note.—The table displays the maximum likelihood estimates of the parametersM
and s and the tail coefficient a. Standard errors are reported in parentheses. Asterisks
denote the magnitude of p values based on a one-sided t-tests for the hypothesis a < 3.
** p < .001.
es of s for
e. The re-
formation



4640 journal of political economy
FIG. 5.—Parameter estimates: maximum likelihood estimates of the parametersM and s
(A) and the tail coefficient a (B). SR0 is success rate. SR1, SR2, and SR3 are the alternative
short-run metrics. LR1 and LR2 are the long-run metrics. The solid lines represent 95%
confidence intervals. A color version of this figure is available online.
20 million users and set the average value of ji so that the standard error
ji=ðniÞ1=2 is 0.022. This is the configuration used in figure 1.
1. Implication 1: Shrinking Experimental Estimates
with Small t-Statistics
The fat tails imply that measured deltas with small t-statistics should be
shrunk aggressively, whereas measured deltas that are outliers should be
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nearly taken at face value. The intuition is that marginally statistically sig-
nificant deltas are likely to be due to a lucky experiment, whereas large
outliers are likely to be real. This can be seen from the shape of the pos-
terior mean function of a typical experiment. Figure 1 displays the poste-
rior mean function Piðd̂i jniÞ. A marginally significant delta equal to 0.044
(which has a t-statistic of 2) has a posterior mean of only 0.006. However,
an outlier experimental result of 0.088 (which has a t-statistic of 4) has a
posterior mean of 0.066.
This shrinkage implies that black-swan ideas correspond to a large share

of the gains from innovation. To see this, consider the following “p -value”
implementation strategy: to implement all ideas with positive, statistically
significant at the 5% level measured deltas. The p -value strategy is the most
commonly used implementation strategy in practice. We can evaluate the
historical gains of this policy by adding the posterior mean quality of the
ideas in the data that would be implemented.Wefind that 74.8%of the his-
torical gains come from the top 2% of ideas. This is an extreme version of
the Pareto 80-20 principle, which arises from the combination of large
outliers and the Bayesian shrinkage.
Finally, the Bayesian shrinkage has implications for the optimal imple-

mentation strategy. In the typical experiment in figure 1, the threshold for
implementation is only 0.010, which corresponds to a t-statistic of 0.472.
This is due to the fact that the prior mean is small and negative, and a rel-
atively weak positive experimental result already pushes an idea into the
region of positive posterior mean. This is similar to the findings of Gold-
berg and Johndrow (2017) in eBay data. The optimal policy generates a
historical gain in our data of 2.3% improvement in success rate. This is
28.16%more than the gain of the p-value policy. We note that practition-
ers use a stricter implementation threshold because of the costs of imple-
menting each feature and of making the codebase more complex. In the
typical experiment of figure 1, the p-value policy is optimal if the imple-
mentation cost equals a 0.0055% gain in success rate.30
2. Implication 2: Gains from Lean Experimentation
Theestimated tail coefficientaof 1.31 is well below the theoretical threshold
a 5 3 of theorem2. Consistent with the theorem, the estimated production
function has decreasing returns to scale close to zero (fig. 2A).31 This
30 A 1%gain in success rate is valued on the order of hundreds ofmillions of dollars. There-
fore, 0.0055% is roughly on the order of amillion dollars of yearly revenue. This is an unlikely
value for the implementation cost. We discuss this issue further in the next subsection.

31 The fat tails are important for the decreasing returns. To fit the data roughly as well as
in fig. 3, we need a normal prior with mean and scale parameters similar to the estimated t-
distribution prior. However, under this normal distribution, the production function dis-
plays increasing returns in the relevant sample sizes (fig. 2B).
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suggests that, in Bing’s setting, there are considerable gains in moving
toward a lean experimentation strategy.
To understand the value of moving toward lean experimentation, con-

sider the following numerical example. A firm tests I innovations in a total
ofN users. Innovations are homogeneous, and the firm splits users equally
across innovations, so that there are n 5 N =I users in each experiment.
Total production Y is then

Y 5 I � f N

I

� 	
5 I � f ðnÞ: (11)

We begin by computing the gain of testing a larger number I of ideas,
keeping the total amount of data N fixed. We continue to use the bench-
mark empirical estimates for Gi and n equal to 20 million users. The com-
putations show that the total production Y grows almost linearly with the
number of ideas tested. An increase in the number of ideas by 10% in-
creases total production by 8.59%, while an increase in the number of
ideas by 20% increases total production by 17.05%.
This computation assumes that there is a costless way to increase the

number of ideas and that marginal ideas are just as productive as current
ideas. Therefore, a key question is whether there are practical ways to
move toward lean experimentation, that is, whether there are additional
ideas to be tested that have much greater benefits than costs.
In the case of Bing, one practical way to increase the number of ideas

would be to reduce offline tests and triage procedures. Triage procedures
take place before online A/B tests. In section V.C, we describe some of the
current triageprocedures anduse thebest available data to evaluate them.
The data show that a substantial number of ideas seem to be eliminated
in the offline tests. Moreover, we attempted to measure the quality of the
marginal ideas, by checking how offline tests predict online performance.
Wefindno evidence thatmarginal ideas are worse. This indicates that there
may be gains achieved in moving toward lean experimentation.
A potential objection to this finding is that there might be high fixed

costs of experimentation, whichwouldmake it unworthy to run smaller ex-
periments. We can use a simple back-of-the-envelope calculation to show
that this would require implausibly large costs. For this analysis, we have
to consider the value of an experiment in dollars. While our analysis is
based on success rate, Microsoft uses a proprietary “monetary overall eval-
uation criterium,”which is a conversion rate betweenmetrics and revenue.
This conversion rate is used to make decisions that involve trade-offs be-
tween key metrics, such as a change that increases ad revenue but hurts
user experience. This conversion rate is proprietary, so we cannot use it in
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our paper to convert the results to dollars. However, we can use a ball-
park value to understand the value of having a typical idea and testing
it in a typical experiment. The value of a typical idea in an experiment
with 20 million users is f (20E6), or a 2.39E203% gain in success rate.
A 1% gain in success rate is valued on the order of hundreds of mil-
lions of dollars of yearly revenue. Therefore, the value of testing an addi-
tional marginal idea is on the order of a million dollars of yearly revenue
increase.
The ideas that are evaluated in offline tests are mostly coded. There-

fore, the additional costs of A/B testing them are likely small. It is implau-
sible that these costs are greater than the estimated benefit, which is of the
order of a million dollars of yearly revenue. In particular, this analysis sug-
gests that the gains from moving toward lean experimentation are eco-
nomically significant. See online appendix G.1 for a thorough discussion
of alternative costs of experimentation and other caveats.
3. Implication 3: The Marginal Value of Data
Is Economically Significant
It is sometimes argued that, in large platforms, sample sizes are so large
that the marginal value of data is close to zero. For example, in the early
days of A/B testingmany industry experts argued that online sample sizes
were “in the millions,” so that it is not necessary to use statistics (Kohavi,
Crook, and Longbotham 2009). It has been claimed that parallelized ex-
perimentationmakes sample sizes so large that the marginal value of data
is insignificant.
We can use our estimates to evaluate the merit of this view in the Bing

setting. We consider the same numerical example, with total produc-
tion being given by equation (11). We consider the gains from increas-
ing n by 10%, holding fixed the number of ideas. We find that this re-
sults in an increase in Y of 1.29% of the total. This increase is much
smaller than 10%, because of the decreasing returns, but still economically
significant.
We can gain some intuition into why data have a nontrivial marginal

value from the production function. The estimated production function
at an n of 20 million users is far from its maximum value, so that getting
more data is still valuable. Moreover, consider the theorem 2 approxima-
tion that f(n) is a constant times nða21Þ=2. This suggests that the marginal
product of the data f 0(n) is about ða 2 1Þ=2 times the average product
f ðnÞ=n. This is close to the relationship that we found between average
and marginal product when increasing n by 10%. That is, the empirical
estimates suggest that the marginal value of data is an order of magnitude
smaller than the average value. At the same time, the estimates are not
consistent with the view that the marginal value of data is negligible.
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V. Additional Results and Robustness

A. Relevance of the Small-n and Large-n Asymptotics
We now examine the range within which the asymptotic formulas in the-
orems 1 and 2 provide a relevant approximation to the value of experi-
mentation. Figure 6 plots the production function for the Bing applica-
tion (based on the parameter estimates for session success rate), along
with the approximations.Weplot n in a log scale, in order to cover a broad
range of sample sizes.
The large-n approximation in theorem 1 starts to be useful in experi-

ments of the order of hundreds ofmillions of users. It becomes a very good
approximation close to one billion users. This is the same point at which
the experiment is precise enough to attain most of the value of perfect
information, so that the production function starts to converge to this
value. In principle, it seems surprising that the asymptotic approximation
becomes accurate only at such large values, which are much greater than
FIG. 6.—Empirically relevant ranges for the asymptotic approximations.Thefiguredepicts
the production function, the large-n approximation from theorem 1, and the small-n approx-
imation from theorem 2 under the benchmark parameter estimates. For large n, we integrate
theorem 1’s formula for f 0 to obtain the approximation f ðnÞ ≈ f ð∞Þ 2 ð1=2Þg ð0Þj2n21. For
small n, we approximated t*(n) by theorem 2’s asymptotic formula at n 5 1, so that
t*ðnÞ ≈ ½2ða 2 1Þ log j�1=2. We took c(d*(n)) to be the relevant constant for the t-distribution.
With this further approximation, the only term in the formula for f 0(n) that depends on n is
nða23Þ=2. Integration then yields f ðnÞ ≈ ½1=ða 2 1Þ�acðjt*Þ2ða21Þnða21Þ=2. A color version of this
figure is available online.
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in realistic experiments. The reason is that the large-n approximation is
based on the fact that, asymptotically, the experiment becomes so informa-
tive that we can essentially ignore the prior. However, large-scale A/B test-
ing aims to detect small performance improvements with noisy outcome
data. This means that, for realistic sample sizes, there is still considerable
uncertainty, and the prior should not be ignored.
The small-n approximation in theorem 2 gives useful estimates for ex-

periments with tens of millions, or potentially one hundredmillion users.
For larger experiments, the approximation is far off. The approximation
converges to infinity, while theproduction function is boundedby the value
of perfect information. Moreover, the small-n approximation gives the
correct qualitative shape of the production function for the relevant sam-
ple sizes of up to tens of millions. The small-n approximation predicts de-
creasing returns to scale due to a < 3, and figure 2 shows that indeed the
production function has decreasing returns to scale.
At first, it may seem counterintuitive that a small-n approximation is

useful for experiments with millions of users. However, in the small-n ap-
proximation outliers are responsible for most of the gains. In practice,
mediocre signal draws still have some payoff importance, which is the rea-
son why the approximation is not exact for realistic experiments. Never-
theless, as shown by our estimates, outliers are still extremely important
at the practically relevant sample sizes. This why the small-n approxima-
tion is relevant in realistic experiment sizes and why the tail coefficient
is a useful statistic for optimal experimentation.
B. Theoretical Extensions
This section considers several extensions of the baseline A/B testing prob-
lem. For the sake of exposition, we provide only a brief description of the
main findings of each extension. The details are provided in online
appendix G.
1. Other Costs of Experimentation
We consider three additional costs: fixed costs of testing an idea, variable
costs of experimentation (as a function of the sample size), and short-
termuser-experience costs, in which each idea ihas a benefit proportional
to Di � ni.32 There are threemain lessons derived from amodel that allows
for costs of experimentation. First, our production function approach is
still useful to understand the value of experimentation. Second, lean ex-
perimentation need not be optimal in the presence of fixed costs because
32 In the Bing example, this cost corresponds to how much the experimental platform
hurts user experience.
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of standard arguments: if fixed costs are large, then the benefit of running
a small experiment may be not be enough to cover the fixed costs. Third,
fat tails are still important for determining the optimal experimentation
strategy even in the presence of fixed costs. In fact, the tail coefficient
of the distribution of unobserved idea quality affects how different char-
acteristics of ideas should be evaluated.33
2. Mutually Exclusive Ideas
We consider a variation of the A/B testing problem where the firm can
implement at most one of the I different ideas after observing the exper-
imentation results. Thus, the payoff from implementing multiple inno-
vations is no longer additive. This accommodates real-world examples,
such as when a firm decides between multiple alternative designs for a
website. The main message from this variation is that the results in cor-
ollary 1 are still true: if the tails are thick enough (a < 3), it is optimal to
run experiments on all ideas even if only one can be implemented.
3. Hypothesis-Testing Payoff
We assume that if an innovation is implemented, its payoff is

K1 Di > 0ð Þ 2 1 Di ≤ 0ð Þ,
as opposed to the linear and unbounded payoff Di. The main implication
of this model is that the threshold for determining the optimality of lean
experimentation becomes a 5 2. This can be derived using the same ar-
gument we used to establish theorem 2. An intuitive derivation can be ob-
tained using the heuristic argument provided in section III.C.
4. Elastic Supply of Ideas
This variation of the model assumes that the firm has an infinitely elastic
supply of identical ideas at a fixed cost per idea.We have twomain results.
First, under some mild conditions, the optimal scale of each experiment
has tomaximize average product net of fixed costs. Importantly, the optimal
scale does not depend on the total number of users. Therefore, it is not op-
timal to grow the size of each experiment without bound as more data are
available. Instead, it is more profitable to increase the number of ideas be-
ing tested. This result gives another version of the optimality of lean exper-
imentationwith a very largenumberof users. Second, we consider priors of
33 For example, with a t-prior and abundant data, greater spread (s) is much more valu-
able the thicker the tails are. This is intuitive because, in the fat-tailed case, a larger fraction
of the gains of experimentation comes from outliers.
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the form D 5 M 1 sD0 and show that, if the prior is very uninformative,
then greater spread (higher s) leads to leaner experimentation.
5. A Fluke Model for the Experimental Noise
Suppose that with probability w the signal d̂i jdi isNð0, j2
nÞ and with prob-

ability 1 2 w, d̂i has as a pdf p(⋅) that does not depend on di. In this model,
the posterior distribution of d is a convex combination of the posterior
density in the model without flukes and the prior. This happens because
the fluke density is not informative about the true idea quality (thus, with
some probability, the prior is not updated). We want to consider the case
in which the fluke density pðd̂iÞ has fat tails. We show that our small-n
results will hold as long as tails of the fluke distribution are thinner than
those of the prior, but the value of small experiments will be close to zero
in other cases.
C. Quality of Marginal Ideas
Our results suggest that Bing could gain by moving toward a lean experi-
mentation approach. One direction for improvement would be to reduce
offline triage procedures, which now are used to eliminate a substantial
number of ideas before they make it to an A/B test. However, this conclu-
sion depends on the quality of themarginal ideas that are being cut in the
offline procedures. It is possible that the offline triage accurately elimi-
nates ideas that have low quality and that these procedures are optimal.
In online appendix D, we examine limited data on the offline triage pro-
cedure to understand whether this is the case or not.We caution that these
data are recorded in an incomplete and potentially biased way and that
there are few observations. The analysis should be interpreted cautiously
because of the data limitations.
We hand-collected data on offline triage procedures conducted by ama-

jor development team within Bing. The procedure works as follows. In an
unobserved phase 0, engineers turn ideas into fully coded techniques.
Candidate techniques are evaluated offline with a crowdsourcing tool sim-
ilar to Amazon’s Mechanical Turk. If these results look promising, engi-
neers canmake a submission to the formal phase 1 reviewpanel. The review
panel decides which techniques to move to phase 2, with the guidelines
being that flat or positive offlinemetrics should pass in usual cases. Phase 2
is an online A/B test. The development team keeps records of a subset of
the phase 1 submissions. Unfortunately, this is far from a complete record,
because most ideas in the data set were ultimately implemented. Thus,
these data are incomplete and are biased toward successful ideas. We have
33 observations, out of which 18 were implemented. For each observation,
we have the results of four offline metrics, the decision to go to phase 2,
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results of online A/B tests when available, and the decision of whether
to implement the idea.
Online appendix D documents two main patterns. First, the data are

consistent with a substantial number of ideas being turned down in tri-
age. The data have some evidence that is consistent with the review panel
roughly following its guidelines.
Second, there is no evidence that these offline tests are predictive of

online performance. Under the hypothesis that the offline tests are suc-
cessful in screening promising ideas, we expect to find that the offline re-
sults are highly predictive of performance in online A/B tests. In fact, the
offline tests have little to no predictive power of the results of online A/B
tests. For example, figure 7 plots the change in session success rate in an
online A/B test versus each standardized offline metric. The figure sug-
gests that there is almost no correlation between the offline and online
results. This is confirmed by a series of alternative specifications reported
in online appendix D. In particular, the offline metrics seem to have al-
most no correlation with each other, even though some of them are sup-
posed to be alternative measures of similar aspects of performance.
FIG. 7.—Performance in online A/B tests versus performance in offline tests. The ver-
tical axis plots the measured delta in success rate. The horizontal axes plot performance in
each of the offline metrics. The horizontal axes are standardized so that the standard error
of the offline experiments is 1.
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These results should be interpreted carefully because of the data limi-
tations. For example, there are dynamic models in which it is optimal to
experiment on all ideas in a first stage and then perform experiments
on only a subset of ideas in a second stage. It is possible that the offline
triage performs this function efficiently. However, the limited evidence
herein presented suggests that the offline triage metrics may not be suffi-
ciently informative to fit this story. This is supported by two other anec-
dotal facts. First, online tests have found several innovations with strong
negative effects, and these were not screenedout by the offline triage. Sec-
ond, themost successful innovations were found in online tests, andmany
were surprises despite the data fromoffline tests. Overall, the collection of
the evidence is suggestive that offline tests arenot efficiently screening out
bad innovations. But more research would be needed to decisively rule
out this hypothesis.
D. Robustness Checks

1. Priors with Bounded Support
Theorem 2 assumes a prior with unbounded support. In principle, this
is at odds with our empirical application because the success rate metric
is bounded between 0 and 1. In practice, this is not an issue because
the prior is concentrated around 0, so that the t-distribution describes
the data well in the relevant range. The probability of D taking a value
that is not feasible is negligible. For example, under the benchmark esti-
mates, the probability of an increase in success rate of more than 10% is
8.35E206. For this reason, our numerical results are virtually unchanged
if we replace g by a distribution that is truncated at 210% and 10%.
2. Heterogeneous Priors and Biases in Tail
Coefficient Estimates
One potential bias in our empirical analysis is that we assumed that all ideas
come from the same prior idea distribution. This assumption is partly jus-
tified because the data set was constructed to include relatively homo-
geneous ideas and those that engineers considered to be ex ante similar.
However, if engineers see these ideas as different, we could be incorrectly
inferring that the distribution of quality is fat tailed.
We empirically examined whether our estimates are robust to this con-

cern. To do so, we estimated the prior distribution of ideas for different
subsets of the data. We split the data into different groups based on areas
of experimentation, time period, experiment length, and sample size.
The results of these disaggregated analyses are reported in online appen-
dix E. For all of these subgroups, we found low tail coefficients, in the
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ballpark of the coefficients in our main specification. This lends support
to our central estimates not suffering from large biases due to heterogene-
ity in priors.
3. Sequential Testing
A potential concern is that our estimates could be biased because of en-
gineers using dynamic experimentation strategies. Themost obvious con-
cern is the presence of p-hacking, where engineers stop experiments as
soon as they find a statistically significant result. Indeed, Berman et al.
(2018) find evidence of p-hacking for businesses using off-the-shelf A/B
testing software. However, large experimental platforms such as EXP em-
ploy several statisticians and have policies in place to eliminate p -hacking.
For example, it is common practice at EXP to limit experiments to be run
inmultiples of one week.34 To formally test whether our finding of fat tails
is an artifact of p-hacking, online appendix E estimates our model sepa-
rately for experiments that last exactly one week (which is the most modal
case) and experiments that are run for longer. Both subsamples display fat
tails with coefficients in the same ballpark. Our main result also holds for
experiments that are run for exact multiples of a week, where sequential
testing is less likely to be a concern.
VI. Conclusion
A/B tests have risen in prominence with the increased availability of
data and lower costs of experimentation. We considered a simple optimal
learning model to understand how to allocate scarce experimental re-
sources in this setting. Crucially, we contribute to the literature on optimal
learning by allowing for the presence of fat tails of innovation quality.
Our results suggest that the presence of fat tails is an important determi-

nant of the optimal innovation strategy. In contexts with a thin-tailed dis-
tribution of innovation quality, it is desirable to perform thorough prior
screening of potential innovations and to run a few high-powered, precise
experiments. In the technology industry, this corresponds to rigorously
screening innovation ideas before A/B tests. In research on antipoverty
programs, it corresponds to testing out only a few ideas with a few high-
quality, high-powered research studies. In contexts with a fat-tailed distribu-
tion of innovation quality, it is advantageous to runmany small experiments
34 The rule is not enforced perfectly, but whenever an experiment run for, say, 10 days,
its final scorecard is compared with the scorecard at the end the first week to detect anom-
alies. In describing experimentation at Microsoft, Kohavi et al. (2013, 1174) write, “While
we allow experimenters to look at daily results, as they lead to insights and could help iden-
tify bugs early on, there is one final scorecard at the end of the experiment, which we re-
quire to be a multiple of weeks, usually two weeks.”
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and to test a large number of ideas in hopes of finding a big winner. In the
technology industry, this corresponds to doing little to no screening of ideas
before A/B tests and running many experiments even if this sacrifices
sample sizes. In research on antipoverty programs, it corresponds to test-
ing out many ideas, even if particular studies have lower quality and statis-
tical power, in hopes of finding a rare big winner.35

We applied our model to detailed data on the experiments conducted
in a major cloud software product, the Bing search engine. We find that
the distribution of innovations is fat tailed, which implies that lean inno-
vation strategies are optimal. This suggests that large performance gains
are possible in our empirical context and that these gains are substantial
in dollar terms. Further, there is suggestive evidence that some of these
gains can be realized with simple changes such as reducing triage pro-
cesses and using Bayesian methods to evaluate innovations.
We stress that our results on Bing should not be considered externally

valid in all contexts. While it is plausible that these results extend to other
similar products, it is quite possible that the distribution of innovations is
different across different contexts. However, the Bing application illus-
trates that it is possible to achieve large gains by understanding the opti-
mal innovation strategy, even in a setting that already uses cutting-edge
experimentation techniques. It would be interesting to extend our anal-
ysis to other contexts, in order to understand how to increase the speed of
innovation, especially in areas of high social value.
Appendix

Proofs

A1. Notation

Denote the normal cumulative distribution with mean m and variance j2 as
Fð�jm, j2Þ and density as fð�jm, j2Þ. Denote the standard normal cumulative dis-
tribution as F(⋅) and density as f(⋅). The density of the signal d̂i conditional
on true quality di is fðd̂i jdi , j2

i =niÞ. Therefore, the likelihood of di and d̂i is
fðd̂i jdi , j2

i =niÞ � giðdiÞ. The marginal distribution of the signal d̂i is

miðd̂i , niÞ ;
ð∞
2∞
f d̂i jdi , j

2
i

ni

� 	
� giðdiÞ ddi : (A1)
35 While our message is novel within the optimal experimentation literature, we have re-
cently encountered similar suggestions in the search and learning literatures. Indepen-
dently from our work, Geng, Pejsachowicz, and Richter (2017) study a model where a de-
cision maker faces a choice among N alternatives, each of which has an unknown value for
each one of N different attributes. Before making her choice, the decision maker can in-
vestigate one object fully and learn its attributes (depth), or she can investigate one attri-
bute and learn every object’s value (breadth). When N is large, breadth is preferred to
depth if and only if the distribution of unknown values has fat tails.
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By Bayes’s rule, the posterior density of di, given signal d̂i , is

giðdi jd̂i , niÞ 5 fðd̂i jdi , j2
i =nÞ � giðdiÞ

miðd̂i , niÞ
:

The posterior mean is

Piðd̂i , niÞ 5

ð∞
2∞
di � giðdi jd̂i , niÞ ddi

5

ð
di � fðd̂i jdi , j2

i =nÞ � giðdiÞ ddi
miðd̂i , niÞ

:

(A2)

A2. Basic Results

Lemma A.1 (Regularity properties). For ni > 0, the marginal densitymiðd̂i , niÞ
and the posterior mean Piðd̂i , niÞ are smooth in both variables. The posterior
mean is strictly increasing in d̂i , and there exists a unique threshold signal d*i ðniÞ
such that the posterior mean, given ni and the signal, equals zero.

Proof. By equation (A1) and Leibniz’s rule, mi is smooth and strictly positive.
Efron’s (2011) equation (2.8) then implies that Pi is smooth. Efron (2011, 1604)
shows that Pi is strictly increasing. Because of the strict monotonicity of Pi, to
show that there exists a unique threshold d*i ðniÞ, it is sufficient to show that
the posterior mean is positive for a sufficiently large positive signal and negative
for a sufficiently large negative signal. Consider the case of a large positive signal
d̂i > 1. Because gið0Þ > 0, there exists d0 with 0 < d0 < 1 and giðd0Þ > 0. The nu-
merator in the posterior mean formula (A2) is bounded below byð0

2∞
di � f d̂i jdi , j

2
i

n

� 	
� giðdiÞ ddi 1

ð1
d0

di � f d̂i jdi , j
2
i

n

� 	
� giðdiÞ ddi

≥ f d̂i j0, j
2
i

n

� 	
�
ð0
2∞
di � giðdiÞ ddi 1f d̂i j0, j

2
i

n

� 	
�
ð0
d0

di � giðdiÞd di :

The fact that giðd0Þ > 0 implies that the second integral is strictly positive. More-
over, as d̂ converges to infinity, the ratio

fðd̂i jd0, j2
i =nÞ

fðd̂i j0, j2
i =nÞ

converges to infinity, so that the posterior mean is positive. The case of a large
negative signal is analogous. QED

A2.1. Proof of Proposition 1

The expected payoff of experimentation strategy n and implementation strategy
S is given by equation (1). By the law of iterated expectations,
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Pðn, SÞ 5 E E o
i∈S

Di jD̂
� �� �

5 E o
i∈S

PiðD̂i , niÞ
� �

:

This implies that, conditional on the signals, it is optimal to implement all in-
novations with strictly positive posterior mean and not to implement innovations
with strictly negative posterior mean. Moreover, any innovation strategy that does
not do so with positive probability is strictly suboptimal, establishing the propo-
sition. QED
A2.2. Proof of Proposition 2

The decomposition of the expected payoff follows from the argument in the body
of the paper. The smoothness of the production function follows from equa-
tion (2) and from the smoothness of the marginal density of the signal and the
posterior mean established in lemma A.1. QED
A3. Proof of the Main Theorems

Throughout this section, we omit dependence on the innovation i because the
results apply to the production function for a single innovation. To avoid nota-
tional clutter, we use subscripts to denote the sample size n, as in d*n and t*n . We
denote the standard error of the experiment jn 5 j=

ffiffiffi
n

p
.

We now give a formula for the marginal product, which is used in the proof of
the main theorems.

Lemma A.2 (Marginal product formula). The marginal product equals

f 0ðnÞ 5 1

2n
� mðd*n , nÞ � Var½DjD̂ 5 d*n , n�: (A3)

Proof. The total value of an innovation combined with data ni equals the ex-
pectation of the value of the innovation times the probability that it is imple-
mented. Moreover, the innovation is implemented iff the signal is above the op-
timally selected threshold. Therefore,

f ðnÞ 5 max
�d

ð
d � Pr D̂ ≥ �djD 5 d, n

� 
 � g ðdÞ dd 2 E½D�1

5 max
�d

ð
d � F d 2 �d

jn

� 	
� g ðdÞ dd 2 E½D�1:

And this expression is maximized at �d 5 d*n by proposition 1. The maximand
is a smooth function of �d and n. Therefore, by the envelope theorem and Leib-
niz’s rule,

f 0ðnÞ 5
ð
d � d

dn
F

d 2 �d

jn

� 	� �
� g ðdÞ ddj�d5d*n

:

Taking the derivative,
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f 0ðnÞ 5
1

2
ffiffiffi
n

p
ð
d � ðd 2 d*n Þ � 1

j
� J d 2 d*n

jn

� 	
� g ðdÞ dd

5
1

2n
�
ð
d � ðd 2 d*n Þ � J d*n jd, j2

n


 � � g ðdÞ dd
5

1

2n
� mðd*n , nÞ �

ð
d � ðd 2 d*n Þ � g ðdjd*n , nÞ dd:

Writing the integrals as conditional expectations, we have

f 0ðnÞ 5 1

2n
� mðd*n , nÞ � E½D2 D̂ 5 d*n , n� 2 d*nE½D

�� ��D̂ 5 d*n , n�
 �
:

The result then follows because E½DjD̂ 5 d*n , n� 5 0 at the optimal threshold d*n .
QED

A3.1. Proof of Theorem 1

Part 1: Preliminary Results. We use a standard result from Bayesian statistics

known as Tweedie’s formula, which holds because of the normally distributed ex-

perimental noise. Tweedie’s formula expresses the conditional mean and vari-

ance of quality, using the marginal distribution of the signal.
Proposition A.1 (Tweedie’s formula). The posterior mean and variance of

D conditional on a signal d̂ and n > 0 are, respectively,

P ðd̂, nÞ 5 d̂ 1 j2
n

d

d d̂
logmðd̂, nÞ (A4)

and

Var½DjD̂ 5 d̂, n� 5 j2
n 1 j4

n � d2

d d̂2
logmðd̂, nÞ:

Proof. See Efron (2011, 1604) for a proof and his equation (2.8) for the for-
mulas. QED

The next lemma allows us to apply Tweedie’s formula to obtain our asymptotic
results.

Lemma A.3 (Convergence of the marginal distribution of signals). For large
n, the marginal distribution of signals is approximately equal to the distribution
of true quality, and the approximation holds for all derivatives. Formally, for any
integer k , as n converges to infinity,

dk

d d̂k
mðd̂, nÞ 5 dk

d d̂k
g ðd̂, nÞ 1 Oð1=nÞ

uniformly in d̂.
Proof. The kth derivative of the marginal distribution of the signal equals

dk

d d̂k
mðd̂, nÞ 5

dk

d d̂k

ð
g ðdÞ � f d̂jd, j2

n


 �
dd

5
dk

d d̂k

ð
g ðdÞ � 1

jn

f
d 2 d̂

jn

 !
dd:
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With the change of variables

u 5
d 2 d̂

jn

,

we have du 5 dd=jn , so that

dk

d d̂k
mðd̂, nÞ 5 dk

d d̂k

ð
g ðd̂ 1 jnuÞ � f uð Þ du:

The integrand and its derivatives with respect to d̂ are integrable. Thus, we can
use Leibniz’s rule and differentiate under the integral sign, yielding

dk

d d̂k
mðd̂, nÞ 5

ð
dk

d d̂k
g ðd̂ 1 jnuÞ � f uð Þ du:

By Taylor’s rule,

dk

d d̂k
mðd̂, nÞ 5

ð
dk

d d̂k
g ðd̂Þ 1 dk11

d d̂k11
� g ðd̂Þjnu 1 hðjnuÞ � j

2
nu2

2

� 	
� f uð Þ du,

where the function h is bounded by H 5 supdd
k12g ðdÞ=ddk12; H is finite by the

assumption that the derivatives of g are bounded. Integrating, we have

dk

d d̂k
mðd̂, nÞ 5 dk

d d̂k
g ðd̂Þ 1

ð
hðjnuÞ � j

2
nu2

2
� f uð Þ du:

The integral is bounded by Hj2
n=2, yielding the desired approximation. QED

Substituting this approximation in the Tweedie formulas in proposition A.1
yields the following asymptotic versions of the Tweedie formulas. Note that the
variance formula is consistent with the intuition, from the Bernstein-von Mises
theorem, that the asymptotic variance of the Bayesian posterior is close to j2

n,
which is the variance of a frequentist estimator that ignores the prior.

Corollary A.1 (Asymptotic Tweedie’s formula). Consider d̂0 with g ðd̂0Þ > 0.
Then, for all d̂ in a neighborhood of d̂0, as n converges to infinity,

Pðd̂, nÞ 5 d̂ 1 j2
n � d

d d̂
log g ðd̂Þ 1 O

1

n2

� 	
,

and

Var½DjD̂ 5 d̂, n� 5 j2
n 1 O

1

n2

� 	
:

These bounds hold uniformly in d̂. In particular,

lim
n→∞

P ðd̂0, nÞ 5 d̂0:

Part 2: Completing the Proof of Theorem 1. Consider d̂ > 0 with g ðd̂Þ > 0 and

g ð2d̂Þ > 0. By corollary A.1, P ðd̂, nÞ converges to d̂ > 0 and P ð2d̂, nÞ converges
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to 2 d̂ < 0. By the monotonicity of P, the limit of d*n must be between 2 d̂ and d̂.

Because g ð0Þ > 0, there exist arbitrarily small such d̂, so the limit of d*n is zero.
The threshold d*n satisfies P ðd*n , nÞ 5 0. Substituting the asymptotic Tweedie

formula for P from corollary A.1, we get

d*n 5 2j2
n

d

d d̂
log g ðd*n Þ 1 O

1

n2

� 	

5 2j2
n � g

0ð0Þ
g ð0Þ 1 O

1

n
� d*n

� 	
1 O

1

n2

� 	
:

The approximation in the second line follows because g ð0Þ > 0 and the second
derivative of g is bounded. This proves the desired asymptotic formula for t*n .

For the marginal product, if we substitute the approximation for the marginal
density in lemma A.3 and for the variance in corollary A.1 into the marginal
product formula (A3), we obtain

f 0ðnÞ 5 1

2n
� g ð0Þ � j2

n 1 o
1

n
� j2

n

� 	
,

implying the desired formula. QED

A3.2. Proof of Theorem 2

Throughout this section, we assume that there is a slowly varying function c(d)
such that

g ðdÞ ∼ acðdÞd2ð11aÞ (A5)

as jdj→∞. In words, we assume that the pdf g(d) is regularly varying at ∞ and2∞
with exponent 2ða 1 1Þ. We assume the existence of a strictly positive constant
C such that cðdÞ > C for FdF large enough. Finally, we assume that E½D� ; M < 0.

Part 1: Integration Formulas and Auxiliary Definitions. Define

Inðd, �d, bÞ ;
ð�d
d

dbg ðdÞ exp 2
1

2

d 2 d*n

jn

� 	2
 !

dd: (A6)

Both the marginal density and the posterior moments evaluated at the thresh-
old signal d*n can be written in terms of (A6):

mðd*n , nÞ 5 ð ffiffiffiffiffiffi
2p

p
jnÞ21Inð2∞,∞, 0Þ,

E½Db j D̂ 5 d*n ; n� 5 Inð2∞,∞, bÞ=Inð2∞,∞, 0Þ:
The definition of the threshold signal implies that Inð2∞,∞, 1Þ 5 0. We estab-

lish the asymptotics of the threshold d*(n) and the marginal product in a series
of claims.

Claim 1: Divergence of the Threshold t-Statistic
Claim 1. t*n ; d*n=jn →∞.
Proof. We establish the claim using a contradiction argument. Suppose that

d*n=jn ↛∞. This implies the existence of a subsequence along which d*nk=jnk
→ C ,

where either (i) 2 ∞ < C < ∞ or (ii) C 5 2∞. In the first case,
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d 2 d*nk

jnk

� 	2

→ C 2, 8 d:

The integrand in In(2∞,∞, 1) is dominated by the integrable function dg(d). The
dominated convergence theorem thus implies that

Ink
ð2∞,∞, 1Þ→

ð∞
2∞
dg ðdÞ exp 2

C 2

2

� 	
dd 5 M exp 2

C 2

2

� 	
< 0,

which contradicts the optimality condition Inð2∞,∞, 1Þ 5 0 for all n. Thus, con-
dition i cannot hold.

Suppose that condition ii holds. Since E½D� < 0 and

f ðnkÞ 5
ð∞
2∞
dF

d 2 d*nk

jnk

� 	
g ðdÞ dd,

the dominated convergence theorem implies f ðnkÞ→M < 0. This is a contradic-
tion: one can achieve a higher product by using the implementation strategy that
does not implement any innovation regardless of the signal observed. QED

Claim 2: Approximation for the Integral near d*n . By claim 1, for any 0 < e < 1

there exists n small enough such that

jn < BnðeÞ ; ed*n < d*n ,

Claim 2. For any power b ≥ 1 and any 0 < e < 1,

Inðd*n 2 BnðeÞ, d*n 1 BnðeÞ, bÞ ∼
ffiffiffiffiffiffi
2p

p
jnd

*
n
b
g ðd*n Þ,

∼
ffiffiffiffiffiffi
2p

p
jnacðd*n Þd*n b2a21

:

(A7)

Proof. Using the change of variables u ; d=d*n , we can write

Inðd*n 2 BnðeÞ, d*n 1 BnðeÞ, bÞ
as

ðd*n Þb11

ð11e

12e

ubg ðud*n Þ exp 2
1

2
u 2 1ð Þ2t*n 2

� 	
du: (A8)

Define

I1 ;
ð11e

12e

ub g ðud*n Þ
g ðd*n Þ

 !
exp 2

1

2
u 2 1ð Þ2t*n 2

� 	
du,

I2 ;
ð11e

12e

ub2a21 exp 2
1

2
u 2 1ð Þ2t*n 2

� 	
du,

I3 ;
ð11e

12e

ub exp 2
1

2
u 2 1ð Þ2t*n 2

� 	
du:

Laplace’s method (Small 2010, 196, proposition 2) implies that
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I2 ∼
ffiffiffiffiffiffi
2p

p
=t*n ∼ I3

as t*n →∞. Since g is bounded, theorem A.5, in appendix A of Whitt (2002), im-
plies that for 0 < e < 1,

g ðud*n Þ
g ðd*n Þ → u2ð11aÞ

uniformly over u ∈ ½1 2 e, 1 1 e�. Therefore, for any z > 0 there exists n(z) small
enough below which

I2 2 zI3 ≤ I1 ≤ I2 1 zI3:

Since z is arbitrary, we conclude that

I1 ∼
ffiffiffiffiffiffi
2p

p

t*n
5

ffiffiffiffiffiffi
2p

p
jn

d*n
:

Equation (A8) implies that

Inðd*n 2 BnðeÞ, d*n 1 BnðeÞ, bÞ 5 ðd*n Þb11g ðd*n ÞI1:

Therefore,

Inðd*n 2 BnðeÞ, d*n 1 BnðeÞ, bÞ ∼
ffiffiffiffiffiffi
2p

p
jnd

*
n
b
g ðd*n Þ ∼

ffiffiffiffiffiffi
2p

p
jnacðd*n Þd*n b2a21

:

QED

Claim 3: Upper Bound on d*n
Claim 3.

d*n ≤ ð1 1 oð1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða 2 1Þ log jn

q
jn:

Proof. Take 0 < e < 1. The optimality condition Inð2∞,∞, 1Þ 5 0 implies that

Inð2∞, 0, 1Þ 1 Inðð1 2 eÞd*n , ð1 1 eÞd*n , 1Þ ≤ Inð2∞,∞, 1Þ 5 0: (A9)

The first term in the equation above is bounded from below:

Inð2∞, 0, 1Þ >
ð0
2∞
dg ðdÞ exp 2

1

2
t*n

2

� 	
dd 5 2D exp 2

1

2
t*n

2

� 	
,

where D ;
Ð 0
2∞jdjg ðdÞ dd is finite and nonzero by assumption. Claim 2 and equa-

tion (A9) imply that

ð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p
jnacðd*n Þd*n2a ≤ D exp 2

1

2
t*n

2

� 	
,

which we can write as

ð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p
j12a
n acðd*n Þt*n 2a ≤ D exp 2

1

2
t*n

2

� 	
:

Taking logarithms on both sides and dividing by 2 ð1=2Þt*n 2
implies
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2ða 2 1Þ log jn

t*n
2 2

2 logðcðd*n ÞÞ
t*n

2 ≥ 1 1 oð1Þ:

By assumption, cðd*n Þ is bounded from below by a constant C > 0. Hence,

2ða 2 1Þ log jn

t*n
2 ≥ 1 1 oð1Þ,

which implies that

ð1 1 oð1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða 2 1Þ log jn

q
jn ≥ d*n :

QED

Claim 4: Integral around 0 for 1 ≤ b < a. For g ∈ ð0, 1Þ, define

AnðgÞ ; j2
n

d*n

� 	g

:

Claim 1 implies AnðgÞ ∈ oðjnÞ and AnðgÞ < d*n for n small enough. Claim 3 im-
plies AnðgÞ→∞ and AnðgÞ ∈ oðj2

n=d*n Þ. In the remaining part of this appendix, we
often use An instead of An(g), for the sake of notational simplicity.

We split the integral In into different regions. Most of the value of the integral
comes from two regions: d ∈ ½2AnðgÞ , AnðgÞ� (where g is large and the exponen-
tial is small) and dn ∈ ½d*n 2 BnðeÞ , d*n 1 BnðeÞ� (where g is small and the exponen-
tial is large).

Claim 4. For any integer b such that 1 ≤ b < a, E½Db� ≠ 0, and for any
0 < g < 1,

Inð2AnðgÞ, AnðgÞ, bÞ ∼ E½Db� exp 2
1

2
t*n

2

� 	
:

Proof. The difference

Inð2An , An , bÞ 2 E½Db� exp 2
1

2
t*n

2

� 	
can be decomposed as

ðAn

2An

dbg ðdÞ � exp 2
1

2

d 2 d*n

jn

� 	2
 !

2 exp 2
1

2

d*n

jn

� 	2
 !" #

dd

1

ðAn

2An

dbg ðdÞ dd 2
ð∞
2∞
dbg ðdÞ dd

� 	
� exp 2

1

2

d*n

jn

� 	2
 ! (A10)

The first term in equation (A10) is smaller than

E jDjb� �
exp An � d

*
n

j2
n

� 	
2 1

� �
� exp 2

1

2
t*n

2

� 	
:

By construction, An ∈ oðj2
n=d*n Þ, implying that the term above is

oðexpð2ð1=2Þt*n 2ÞÞ. The second term equals
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2

ð2An

2∞
dbg ðdÞ dd 1

ð∞
An

dbg ðdÞ dd
� �

� exp 2
1

2

d*n

jn

� 	2
 !

:

Since b < a, Karamata’s integral theorem (theorem 1a in Feller 1967, 281) im-
plies that the second term equals

2ð1 1 oð1ÞÞ a

a 2 b
cðAnÞAb2a

n 1 ð21Þb a

a 2 b
cð2AnÞAb2a

n

� �
� exp 2

1

2
t*n

2

� 	
:

Since any slowly varying function is such that jdj2hcðjdjÞ→ 0 for all h > 0 (see
eq. [2] in Karamata 1962), then

Inð2An , An , bÞ 2 E½Db� exp 2
1

2
t*n

2

� 	
5 o exp 2

1

2
t*n

2

� 	� 	
:

Since E½Db� ≠ 0, the result follows. QED

Claim 5: Integral around 0 for Arbitrary b
Claim 5. For any integer b ≥ 1 and any 0 < g < 1,

Inð2AnðgÞ , AnðgÞ, bÞ ∈ O Ab21
n exp 2

1

2
t*n

2

� 	� 	
:

Proof. jInð2An , An , bÞj is bounded byðAn

2An

dj jbg ðdÞ exp 2
1

2

d 2 d*n

j2
n

� 	2
 !

ⅆ d ≤
ðAn

2An

dj jg ðdÞ exp 2
1

2

d 2 d*n

j2
n

� 	2
 !

dd

5 Ab21
n ð1 1 oð1ÞÞE½ Dj j� exp 2

1

2
t*n

2

� 	
,

where the last line follows from an argument identical to the proof of claim 4.
QED

Claim 6: Integral Below 2An

Claim 6. Let 0 < g < 1. For any a > 1 and any integer b ≥ 1,

Inð2∞,2AnðgÞ, bÞ ∈ o d*n
b21

exp 2
1

2
t*n

2

� 	� 	
:

Proof. jInð2∞,2An, bÞj is bounded above by the product of expð2ð1=2Þt*n 2Þ
and ð2An

2∞
jdjbg ðdÞ exp d*n d

j2
n

2
1

2

d

jn

� 	2� 	
dd: (A11)

Since d ≤ 0, equation (A11) is further bounded byð2An

2∞
dj jg ðdÞHbð dj jÞ dd, (A12)

where HbðdÞ ; db21e2d2=2j2
n is defined for d ≥ 0. In this range, the function Hb(⋅) is

maximized at d1n ; ðb 2 1Þ1=2jn.36 The integral in (A12) can then be bounded by
36 The derivative of Hb(⋅) is given by H 0
bðdÞ 5 ½ðb 2 1Þ 2 ðd2=j2

nÞ�HbðdÞ=d.
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Hbðd1n Þ
ð2An

2∞
dj jg ðdÞ dd, (A13)

where Hbðd1n Þ 5 ðb 2 1Þðb21Þ=2e2ðb21Þ=2jb21
n 5 Oðjb21

n Þ if b > 1, and H1ðd1n Þ 5 1
when b 5 1. By assumption, E ½jDj� < 1∞; as a result,

Ð 2An

2∞ jdjg ðdÞ dd ∈ oð1Þ.
Therefore,

Inð2∞,2An , bÞj j ∈ o jb21
n exp 2

1

2
t*n

2

� 	� 	
:

Since jn ∈ oðd*n Þ, we conclude that

Inð2∞,2An , bÞj j ∈ o d*n
b21

exp 2
1

2
t*n

2

� 	� 	
:

QED

Claim 7: Integral between An and d*n 2 BnðeÞ
Claim 7. Take any a > 1 and b ≥ 1. For any e, g ∈ ð0, 1Þ such that g > 2ð1 2 eÞ,

then,

InðAnðgÞ, d*n 2 BnðeÞ, bÞ ∈ o d*n
b21

exp 2
1

2
t*n

2

� 	� 	
:

Proof. jInðAn , d*n 2 BnðeÞ, bÞj equals

exp 2
1

2
t*n

2

� 	ðð12eÞd*n

An

dg ðdÞHbðdÞ dd,

whereHbðdÞ ; db21 expðð2d2=2j2
nÞ 1 ðd*n d=j2

nÞÞ;Hb(⋅) is an increasing function on
the interval ½An , ð1 2 eÞd*n �.37 Consequently, jInðAn , d*n 2 BnðeÞ, bÞj can be bounded
by the product of expð2ð1=2Þt*n 2Þ and

ðð12eÞd*n

An

dg ðdÞHbðð1 2 eÞd*n Þ dd ≤ Hbðð1 2 eÞd*n ÞRn ,

where Rn ;
Ð ∞
An
dg ðdÞ dd. Karamata’s integral theorem (theorem 1a in Feller 1967,

281) implies that

Rn ∼
a

a 2 1
A2

ng ðAnÞ ∼ a

a 2 1
A2ða21Þ

n cðAnÞ:
37 H 0
bðdÞ 5 ½2d2 1 d*n d 1 ðb 2 1Þj2

n �HbðdÞ=ðdj2
nÞ. The sign of the derivative thus depends

on the sign of the quadratic function 2d2 1 d*n d 1 ðb 2 1Þj2
n , which can be written as

2ðd 2 d2n Þðd 2 d1n Þ, where

d±n 5
d*n

2
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 4ðb 2 1Þj2

n=d*
2

n

q� 	
:

For n small enough, we have d2n ≤ 0 ≤ An and ð1 2 eÞd*n ≤ d1n ∼ d*n .
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Consider 0 < h ; ða 2 1Þ=2 < a 2 1:

a

a 2 1
A2ða21Þ

n cðAnÞ 5 a

a 2 1
A2ða21Þ=2

n A2h
n cðAnÞ,

5
a

a 2 1
A2ða21Þ=2

n oð1Þ,
ðsince for any h > 0, A2h

n cðAnÞ→ 0 as An →∞Þ

5
a

a 2 1
t*n

gða21Þ=2 1

jgða21Þ=2
n

oð1Þ,

ðby definition of AnðgÞÞ:
Therefore,

Rn ∈ o t*n
gða21Þ=2 1

jgða21Þ=2
n

� 	
:

The definition of Hb(⋅) further implies that

Hbðð1 2 eÞd*n Þ 5 ð1 2 eÞb21
d*n

b21
exp 2

ð1 2 eÞ2d*2n
2j2

n

1
d*n ð1 2 eÞd*n

j2
n

 !

5 ð1 2 eÞb21
d*n

b21
exp t*n

2 ð1 2 eÞ 2 1

2
ð1 2 eÞ2

� 	� 	

5 ð1 2 eÞb21
d*n

b21
exp ð1 2 eÞ t

*
n
2

2

 !
:

Claim 3 showed that t*n
2
=2 ≤ ð1 1 oð1ÞÞða 2 1Þ log jn . Consequently,

Hbðð1 2 eÞd*n Þ ≤ ð1 2 eÞb21
d*n

b21
exp ð1 2 eÞð1 1 oð1ÞÞða 2 1Þ log jnð Þ

5 ð1 2 eÞb21
d*n

b21
jð12eÞða21Þð11oð1ÞÞ
n :

Therefore,

Hbðð1 2 eÞd*n ÞRn 5 Hbðð1 2 eÞd*n Þo t*n
gða21Þ=2 1

jgða21Þ=2
n

� 	
,

and the bound on Hbðð1 2 eÞd*n Þ implies

Hbðð1 2 eÞd*n ÞRn ≤ d*n
b21

o t*n
gða21Þ=2 1

j gða21Þ=2½ �2ð12eÞða21Þð11oð1ÞÞ
n

� 	
:

Using again the upper bound for t*n in claim 3 gives

Hbðð1 2 eÞd*n ÞRn ≤ d*n
b21

o
log jgða21Þ=2

n

j ða21Þ=2½ �½g22ð12eÞð11oð1ÞÞ�
n

 !
:

Since g 2 2ð1 2 eÞ > 0, then g 2 2ð1 2 eÞð1 1 oð1ÞÞ > 0 for n small enough.
We conclude that Hbðð1 2 eÞd*n ÞRn ∈ oðd*n b21Þ, and therefore
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InðAn, d*n 2 BnðeÞ, bÞ
�� �� ∈ o d*n

b21
exp 2

1

2
t*n

2

� 	� 	
:

QED

Claim 8: Integral to the Right of d*n 1 BnðeÞ Is Small
Claim 8. For any b < a 1 1 and 0 < e < 1,

Inðd*n 1 BnðeÞ,∞, bÞ ∈ o jnd
*
n
b
g ðd*n Þ

� �
:

Proof. Define

I1 ; t*n

ð∞
11e

ub g ðud*n Þ
g ðd*n Þ

 !
=g ðd*n ÞÞ exp 2

1

2
ðu 2 1Þ2t*n 2

� 	
du,

I2 ; t*n

ð∞
11e

ub2ða11Þ exp 2
1

2
ðu 2 1Þ2t*n 2

� 	
du,

I3 ; t*n

ð∞
11e

ub exp 2
1

2
ðu 2 1Þ2t*n 2

� 	
du,

I4 ; t*n

ð∞
12e

ub exp 2
1

2
ðu 2 1Þ2t*n 2

� 	
du:

1. Since b < a 1 1,

I2 ≤
ffiffiffiffiffiffi
2p

p ð1 1 eÞb2ða11Þð1 2 Fðe t*n ÞÞ
ðby definition of the standard normal cumulative

distribution functionÞ,
5

ffiffiffiffiffiffi
2p

p ð1 1 eÞb2ða11Þ
Fð2 e t*n Þ,

5 O exp 2
1

2
e t*n

2

� 	� 	
,

where the last line follows from equation (26.2.12) in Abramowitz and
Stegun (1964).

2. Laplace’s method implies that I4 ∼ ð2pÞ1=2.
3. By assumption, g is bounded. Hence, theorem A.5, in appendix A of Whitt

(2002), implies that for e > 0,

g ud*n

 �
g d*n

 � → u2ð11aÞ

uniformly over u ∈ ½1 2 e,∞Þ.

Therefore, for any g there exists small-enough n(g) below which

I1 ≤ I2 1 gI3 ≤ I2 1 gI4 5 I2 1 gð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p
:
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Using the change of variables u 5 d=d*n and the inequality above,

0 ≤ Inðð1 1 eÞd*n ,∞, bÞ=jnd
*
n
b
g ðd*n Þ 5 I1

≤ ðI2 1 gð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p Þ

≤ O exp 2
1

2
et*n

2

� 	� 	
1 gð1 1 oð1ÞÞ ffiffiffiffiffiffi

2p
p Þ:

Since this holds for any g > 0, we conclude that

Inðð1 1 eÞd*n ,∞, bÞ ∈ o jnd
*
n
b
g ðd*n Þ

� �
:

QED

Part 2: Asymptotics of the Threshold
Lemma A.4. Under the assumptions of theorem 2,

t*n ; d*n=jn ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða 2 1Þ log jn

q
:

Proof. Since a > 1, the optimality condition Inð2∞,∞, 1Þ 5 0 and claims 1, 2,
4, 6, 7, and 8 imply that

ð1 1 oð1ÞÞ � ð2mÞ � exp 2
1

2
t*n

2

� 	
5

ffiffiffiffiffiffi
2p

p
jnd

*
n g ðd*n Þ

5 ð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p
j12a
n acðd*n Þt*n 2a

:

Taking logs on both sides implies that

oð1Þ 1 logð2mÞ 2 1

2
t*n

2
5 logð ffiffiffiffiffiffi

2p
p

aÞ 1 logðcðd*n ÞÞ 1 ð1 2 aÞ log jn 2 at*n ,

which implies that for every h > 0,

ð1 1 oð1ÞÞ 1
2
t*n

2
5 ða 2 1 2 hÞ log jn 2 log

cðd*n Þ
d*n

h

� 	
:

Since cðd*n Þ=d*n h
→ 0, for every h > 0, for any small-enough n,

1

2
t*n

2 ≥ ð1 1 oð1ÞÞ � ða 2 1 2 hÞ log jn:

We conclude that for any h > 0,

lim infn→ 0

t*n
2

2ða 2 1Þ log jn

≥ 1 2
h

a 2 1
:

Claim 3 then implies

t*n
2 ∼ 2ða 2 1Þ log jn:

QED
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Part 3: Asymptotics of the Marginal Product
Lemma A.5. Under the assumptions of theorem 2,

f 0ðnÞ ∼ 1

2n
� g ðd*n Þ � d*2n ∼

1

2n
� acðd*n Þ � ðd*n Þ2ða21Þ:

Proof. The proof has three steps.

Step 1. Lemma A.4 implies that

exp 2
1

2
t*n

2

� 	
∈ O jnd

*
n g ðd*n Þ
 �

:

Step 2. Claims 2 and 5–8 and the fact that AnðgÞ ∈ oðd*n Þ for any 0 < g < 1 im-
ply that

I2ð2∞,∞, 2Þ 5 oð1Þd*n exp 2
1

2
t*n

2

� 	
1 ð1 1 oð1ÞÞ ffiffiffiffiffiffi

2p
p

jnd
*2
n g ðd*n Þ:

Step 1 and d*n →∞ imply that

I2ð2∞,∞, 2Þ 5 ð1 1 oð1ÞÞ ffiffiffiffiffiffi
2p

p
jnd

*2
n g ðd*n Þ:

Step 3. The envelope theorem formula implies that

f 0ðnÞ 5 1

2n

1ffiffiffiffiffiffi
2p

p
jn

Inð2∞,∞, 2Þ:

Steps 2 and 3 imply that for any a > 1,

f 0ðnÞ ∼ 1

2n
d*

2
n g ðd*n Þ ∼ 1

2n
ac d*n

 �

d*n

 �2ða21Þ

:

QED

Part 4: Completing the Proof. Below, we establish the four parts of theorem 2.

1. Lemma A.4 showed that t*n
2 ∼ 2ða 2 1Þ log jn . The continuity of the

square root function and the definition of the asymptotic equivalence re-
lation (∼) imply that

t*n ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða 2 1Þ log jn

q
,

where jn ; j=
ffiffiffi
n

p
.

2. Lemma A.5 showed that

f 0ðnÞ ∼ 1

2n
d*

2
n g ðd*n Þ ∼ 1

2n
ac d*n

 �

d*n

 �2ða21Þ

:

Since t*n ; d*n=jn , then

f 0 nð Þ ∼
1

2n
ac d*n

 �

t*n

 �2 a21ð Þ

j2 a21ð Þ
n

5
1

2n
ac d*n

 �

jt*n

 �2 a21ð Þ ffiffiffi

n
p a21ð Þ

5
1

2
ac d*n

 �

jt*n

 �2 a21ð Þ

n a23ð Þ=2:
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3. Note that

f 0ðnÞ > ð1 1 oð1ÞÞ 1
2
aCðjt*n Þ2ða21Þnða23Þ=2,

ðsince we have assumed that cðd*n Þ > CÞ,
5 Oð1Þðlog jnÞ2ða21Þ=2nða23Þ=2,

ðby part 1 of theorem 2Þ,

5 Oð1Þ log
1

n

� 	� 	21 1

n

� 	ð32aÞ=ða21Þ� �ða21Þ=2

:

The result follows, as for 1 < a < 3

lim
n→ 0

log
1

n

� 	� 	21 1

n

� 	ð32aÞ=ða21Þ
→∞:

4. For any h > 0,

f 0ðnÞ 5 Oð1Þcðd*n Þðt*n Þ2ða21Þnða23Þ=2

5 Oð1Þðcðd*n Þ=d*n hÞðd*n Þhðt*n Þ2ða21Þnða23Þ=2

5 Oð1Þðcðd*n Þ=d*n hÞðt*n Þ2ða212hÞnða232hÞ=2:

Since a > 3, there exists h > 0 such that a 2 1 > h and a 2 3 > h. For any
such h,

lim
n → 0

ðcðd*n Þ=d*n hÞðt*n Þ2ða212hÞnða232hÞ=2 5 0,

as for any slowly varying function cðd*n Þ=d*n h
→ 0 as d*n →∞ (lemma 2 in Feller

1967, 277).
A4. Additional Proofs

A4.1. Proof of Remark 1

Suppose that for N large enough, the optimal experimentation strategy is not
lean. Then, it is possible to construct a sequenceNk →∞ such that, in the optimal
experimentation strategy, an idea i is not experimented on at all and an idea j is
experimented on the most. The idea that is experimented on the most has at
least Nk=I users. So the gain from taking half the users in idea j and placing them
on idea i is at least

fi ðNk=2I Þ 1 fj ðNk=2I Þ 2 fj ðNkÞ: (A14)

In the proof of lemma A.2 (in sec. A3), we showed that

fi ðnÞ 5
ð∞
2∞
dF

d 2 d*n

jn

� 	
giðdÞ dd:
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Part 1 of theorem 1 showed that d*n=jn → 0 as n→∞. Consequently, fi ðnÞ→
fi ð∞Þ ; E½D1

i � > 0. We conclude that along the sequence Nk the bound on A14
converges to fi(∞), reaching a contradiction.

A4.2. Proof of Corollary 1

Part 1. First, we show that if a < 3, it is optimal to run experiments on all ideas

(go lean). The result follows directly from the first-order conditions of the firm’s

problem. The firm’s optimal experimentation strategy solves

max
n1, ::: ,nI

o
I

i51

fi ðniÞ, subject too
I

i51

ni ≤ N , ni ≥ 0 8 i:

The Karush-Kuhn-Tucker conditions imply that the optimal experimentation
strategy n 5 ðn*1 , ::: , n*I Þ must satisfy

f 0
i ðn*i Þ 2 l 1 mi 5 0, 8 i,

lðo
I

i51

n*i 2 I Þ 5 0, l ≥ 0,

n*i mi 5 0, mi ≥ 0, 8 i:

Suppose that a < 3 and that n is not lean. Any such experimentation strategy
must leave at least some idea i left untested. Without loss of generality, suppose
that it is the first one. This means that the Lagrange multipliers, which are finite,
must satisfy

f 0
1 ð0Þ 2 l 1 m1 5 0:

This is a contradiction, as theorem 2 has shown that whenever a < 3, f 0
1 ð0Þ is in-

finity. We conclude that when a < 3 the optimal experimentation strategy must
be lean.

Part 2. We now show that if a > 3, it is optimal to concentrate all the experi-

mental resources on only one idea. Suppose that this is not the case. Then an op-

timal experimentation strategy must have at least two ideas i, j such that ni > 0

and nj > 0. Without loss of generality, let i 5 1 and j 5 2. We slightly abuse nota-

tion and write n1, n2 instead of n1(N ) and n2(N ), unless confusion may arise. We

derive a contradiction in two steps.
Step 1. We use theorem 2 to show that if an optimal experimentation strategy

has n1 > 0, n2 > 0, then

lim
N → 0

n1

n2

5
j2
1

j2
2

� 	 a21ð Þ= a23ð Þ
:

We use this result to argue that if N is small enough and n1 > 0, n2 > 0, it is op-
timal to assign more participants to the idea with the larger experimental noise.

Proof. If it is indeed optimal to A/B-test both ideas, then

f 0
2 ðn1Þ
f 0
2 ðn2Þ 5 1
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(by the first-order conditions). Part 2 of theorem 2 gives

ð1 1 oð1ÞÞ cðd
*ðn1ÞÞ

cðd*ðn2ÞÞ
j1t*ðn1Þ
j2t*ðn2Þ
� 	2ða21Þ n1

n2

� 	ða23Þ=2
5 1

(since, by assumption, a1 5 a2). We have also assumed that c(d) converges to
some constant c as d→∞. Consequently, part 1 of theorem 2 implies

lim
N → 0

j2
2 ln j2=

ffiffiffiffiffi
n2

p
 �
j2
1 ln j1=

ffiffiffiffiffi
n1

p
 � !ða21Þ=2
n1

n2

� 	ða23Þ=2
5 1: (A15)

The sequence n1=n2 must be bounded (otherwise, the left-hand side of
eq. [A15] will diverge to infinity). An analogous argument implies that n2=n1

is also bounded.
Take any convergent subsequence of n1=n2. Such a subsequence exists by vir-

tue of the Bolzano-Weirstrass theorem. Let h denote its limit. Since n2=n1 is also
bounded, then h > 0. Algebraic manipulation of equation (A15) implies

j2
2

j2
1

� 	ða21Þ
hða23Þ 5 1:

Hence,

h 5
j2
1

j2
2

� 	 a21ð Þ= a23ð Þ
:

The subsequence of n1=n2 was taken arbitrarily. Therefore, any convergent sub-
sequence must have the same limit. We conclude that

lim
N → 0

n1

n2

5
j2
1

j2
2

� 	 a21ð Þ= a23ð Þ
:

QED
Step 2. Assume that j1 ≥ j2. We show that

lim
N → 0

f1ðn1ðN Þ 1 n2ðN ÞÞ
f1ðn1ðN ÞÞ 1 f2ðn2ðN ÞÞ > 1: (A16)

This means that if N is small enough, the experimentation strategy in which
n*1 5 n1 1 n2, n*2 5 0 leads to higher output than the strategy in which n1 > 0,
n2 > 0. This will contradict the optimality of the strategy in which ideas 1 and
2 are A/B tested.

Proof. Since the limit of both the numerator and the denominator in equa-
tion (A16) is zero, we can use L’Hôpital’s rule and focus on

lim
N → 0

df 1ðn1ðN Þ 1 n2ðN ÞÞ=dN
dð f1ðn1ðN ÞÞ 1 f2ðn2ðN ÞÞÞ=dN :

Both n1 and n2 are differentiable functions of N. Consequently, it is sufficient to
show that

lim
N → 0

f 0
1 ðn1ðN Þ 1 n2ðN ÞÞðn0

1ðN Þ 1 n0
2ðN ÞÞ

f 0
1 ðn1ðN ÞÞn0

1ðN Þ 1 f 0
2 ðn1ðN ÞÞn0

2ðN Þ > 1:
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This inequality holds if and only if

lim
N → 0

f 0
1 ðn1ðN Þ 1 n2ðN ÞÞ

f 0
1 ðn1ðN ÞÞ > 1,

since f 0
1 ðn1ðN ÞÞ 5 f 0

2 ðn2ðN ÞÞ is a necessary condition for optimality.
In a slight abuse of notation, theorem 2 implies

f 0
1 ðn1 1 n2Þ
f 0
1 ðn1Þ 5 ð1 1 oð1ÞÞ t*ðn1 1 n2Þ

t*ðn1Þ
� 	2ða21Þ

1 1
n1

n2

� 	ða23Þ=2

5 ð1 1 oð1ÞÞ ln j1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 1 n2

pð Þ
ln j1=

ffiffiffiffiffi
n1

p
 � !2ða21Þ=2

1 1
n1

n2

� 	ða23Þ=2

5 ð1 1 oð1ÞÞ 1 1
ln 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 n2=n1

p� �
ln j1=

ffiffiffiffiffi
n1

p
 �
0
@

1
A

2ða21Þ=2

1 1
n1

n2

� 	ða23Þ=2
:

And from step 1,

lim
N → 0

f 0
1 ðn1ðN Þ 1 n2ðN ÞÞ

f 0
1 ðn1ðN ÞÞ 5 1 1

j2
1

j2
2

� 	ða21Þ=ða23Þ
 !ða23Þ=2

≥ 2ða23Þ=2

ðas j2
1 ≥ j2

2Þ
> 1,

where the last line is implied by the condition a > 3. Thus, we have shown that
moving all the experimental resources to the idea with the larger experimental
noise leads to a higher output level. This contradicts the optimality of any exper-
imentation strategy in which n1 > 0 and n2 > 0. Therefore, when N is small, the
optimal experimentation strategy when a > 3 must be big (with all the experi-
mental resources concentrated on only one idea). QED
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